어성초로부터 분리된 Quercetin의 Protein Tyrosine Phosphatase 1B 활성

Protein Tyrosine Phosphatase 1B Activity of Quercetin from Houttuynia Cordata

  • 최화정 (생명공학연구원 천연의학연구센터) ;
  • 배은영 (생명공학연구원 천연의학연구센터) ;
  • 노용주 (원광대학교 한의학전문대학원 한약자원개발학과) ;
  • 백승화 (원광대학교 한의학전문대학원 한약자원개발학과)
  • Choi, Hwa-Jung (Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Eun-Young (Natural Medicines Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • No, Yong-Ju (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Baek, Seung-Hwa (Department of Herbal Resources, Professional Graduate School of Oriental Medicine, Wonkwang University)
  • 발행 : 2008.12.25

초록

Quercetin which isolated form the roots of Houttuynia cordata. was determined on the basis of IR, ID and 2D NMR specta by direct comparison with authentic compounds. Protein tyrosine phophatase 1B (PTP1B) is thought to be a negative regulator in insulin signal-transduction pathway. Insulin-resistance by the activation of PTP1B is a hallmark of both type 2 diabetes and obesity. Thus, the compound inhibiting PTP1B can improve insulin resistance and can be effective in treating type 2 diabetes and obesity. Quercetin which measured the inhibitory activity against PTP1B was 92.1% inhibition in the 30 ${\mu}g$/mL, 83.4% inhibition in the 6 ${\mu}g$/mL and 76.5% inhibition in the 3 ${\mu}g$/mL. These results suggest that quercetin retains a potential PTP1B activity.

키워드

참고문헌

  1. Denu, J.M., Zhou, G., Wu, L., Zhao, R., Yuvaniyama, J. The purification and characterization of a human dual-specific protein tyrosine phosphatase, J. Biol. Chem. 270: 3796-3803, 1995. https://doi.org/10.1074/jbc.270.8.3796
  2. Burke, T.R., Zhang, Z.Y. Protein tyrosine phosphatases : structure, mechanism and inhibitor discovery, Biopolymers (Peptide Science), 47: 225-241, 1998. https://doi.org/10.1002/(SICI)1097-0282(1998)47:3<225::AID-BIP3>3.0.CO;2-O
  3. Hamaguchi, T., Masuda, A., Morino, T., Osada, H. Stevastelins, a novel group of immunosuppressants, inhibit dual-specificity protein phosphatases. Chem. Biol. 4: 279-286, 1997. https://doi.org/10.1016/S1074-5521(97)90071-5
  4. Johnson, T.O., Eromolieff, J., Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nature Review 1: 696-709, 2002. https://doi.org/10.1038/nrd895
  5. Kahn, C.R. Insulin action, diabetogenes and the cause of type II diabetes, Diabetes, 43: 1066-1084, 1994. https://doi.org/10.2337/diab.43.8.1066
  6. Saltiel, A.R., Pessin, J.E. Insulin signaling pathways in time and space, Trends in Cell Biology, 12: 65-71, 2002. https://doi.org/10.1016/S0962-8924(01)02207-3
  7. Ukkola, O., Santaniemi, M. Protein tyrosine phosphatase 1B : a new target for the treatment of obesity and associated co-morbidities, J. Intern. Med. 251: 467-475, 2002. https://doi.org/10.1046/j.1365-2796.2002.00992.x
  8. Elcheble, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A.L., Normandin, D., Cheng, A., HimmsHagen, J., Chan, C-C., Ramanchandran, C., Gresser, M.J., Tremblay, M.L., Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene, Science, 283: 1544-1549, 1999. https://doi.org/10.1126/science.283.5407.1544
  9. Zinker, B.A., Rondinone, C.M., Trevillyan, J.M., Gum, R.J., Clampit, J.E., Waring, J.F., Xie, N., Wilcox, D., Jacobson, P., Frost, L., Kroeger, P.E., Reilly, R.M., Koterski, S., Opgenorth, T.J., Ulrich, R.G., Crosby, S., Butler, M., Murray, S.F., McKay, R.A., Bhanot, S., Monia, B.P., Jirousek, M.R. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose and improves insulin sensitivity in diabetic mice, Proc. Natl. Acad. Sci. USA. 99: 11357-11362, 2002.
  10. Klaman, L.D., Boss, O., Peroni, O.D., Kim, J.K., Martino, J.L., Zabolotny, J.M., Moghal, N., Lubkin, M., Kim, Y-B., Sharpe, A. H., Stricker-Krongrad, A., Shulman, G. I., Neel, B.G., Kahn, B.B. Increased energy expenditure, decreased adiposity and tissue-specific insulin sensitivity in protein-tyrosine phosphatase 1B-deficient mice, Mol Cell. Biol. 20: 5479-5489, 2000. https://doi.org/10.1128/MCB.20.15.5479-5489.2000
  11. Van Huijsduijnen, R.H., Bombrun, A., Swinnen, D. Selecting protein tyrosine phosphatase as drug targets, Drugs Discovery Today, 7: 1013-1019, 2002. https://doi.org/10.1016/S1359-6446(02)02438-8
  12. 이인영. 어성초가 가토의 적출 장관운동에 미치는 영향. 한양대학교 대학원 석사학위 논문, 1986.
  13. 조규형. 어성초 건강법. 서진각, 1996.
  14. 신민교. 임상본초학. 영림사, pp 336-337, 1994.
  15. 노병규. 어성초 추출물의 항알레르기의 효과에 관한 연구, 원광대학교 대학원 박사학위 논문, 1998.
  16. 임응규, 박석근, 노길형, 임달성, 유증자. 어성초, 도서출판서일, 1996.
  17. Kim, D.H., Kim, S.Y., Park, S.Y., Han, M.J. Metabolism of quercitrin by human interstinal bacteria and its ralation to some biological activities, Biol. Pharm Bull., 22(7):749-751, 1999. https://doi.org/10.1248/bpb.22.749
  18. Sanchez-Rabaneda, F., Jauregui, O., Lamuela-Raventos, R. M., Bastida, J., Viladomat, F., Codina, C. Identification of phenolic compounds in artichoke waste by high- performance liquid chromatography-tandem mass spectrometry. J. Chromatogr A, 1008(1):57-72, 2003. https://doi.org/10.1016/S0021-9673(03)00964-6
  19. Parejo, I., Jauregui, O., Sanchez-Rabaneda, F., Viladomat, F., Codina, C. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative lectrospray ionization tandem mass spectrometry, J. Agric. Food Chem. 52(12):3679-3687, 2004. https://doi.org/10.1021/jf030813h
  20. Sanchez-Rabaneda, F., Jauregui, O., Casals, I., Andres- Lacueva, C., Izquierdo-Pulido, M., Lamuela-Raventos, R.M. Liquid chromatographic/ electrospray ionization tandem mass spectrometric study of the phenolic composition of cocoa (Theobroma cacao). J. Mass Spectrom. 38(1):35-42, 2003. https://doi.org/10.1002/jms.395
  21. Wang, M., Simon, J.E., Aviles, I.F., He, K., Zheng, Q.Y., Tadmor, Y. Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J. Agric. Food Chem. 51(3):601-608, 2003. https://doi.org/10.1021/jf020792b