DOI QR코드

DOI QR Code

On Some Results for Five Mappings using Compatibility of Type(α) in Intuitionistic Fuzzy Metric Space

  • Park, Jong-Seo (Department of Math. Education, Chinju National University of Education) ;
  • Park, Jin-Han (Division of Mathematical Sciences, Pukyong National University) ;
  • Kwun, Young-Chel (Department of Mathematics, Dong-A University)
  • 발행 : 2008.12.01

초록

The object of this paper is to introduce the notion of compatible mapping of type(${\alpha}$) in intuitionistic fuzzy metric space, and to establish common fixed point theorem for five mappings in intuitionistic fuzzy metric space. Our research are an extension for the results of [1] and [7].

키워드

참고문헌

  1. Grabiec, M.,1988. Fixed point in fuzzy metric spaces. Fuzzy Sets and Systems 27, 385-389 https://doi.org/10.1016/0165-0114(88)90064-4
  2. George, A., Veeramani, P., 1994. On some results in fuzzy metric spaces. Fuzzy Sets and Systems 64, 395-399 https://doi.org/10.1016/0165-0114(94)90162-7
  3. Kramosil, J., Michalek J., 1975. Fuzzy metric and statistical metric spaces. Kybernetica 11, 326-334
  4. Park, J. H., 2004. Intuitionistic fuzzy metric spaces. Chaos Solitons & Fractals 22(5), 1039-1046 https://doi.org/10.1016/j.chaos.2004.02.051
  5. Park, J. H., Park, J. S., Kwun, Y. C., 2006. A common fixed point theorem in the intuitionistic fuzzy metric space. Advances in Natural Comput. Data Mining(Proc. 2nd ICNC and 3rd FSKD), 293-300
  6. Park, J. H., Park, J. S., Kwun, Y. C., 2007. Fixed point theorems in intuitionistic fuzzy metric space(I). JP J. fixed point Theory & Appl. 2(1), 79-89
  7. Park, J. H., Park, J. S., Kwun, Y. C., 2007. Fixed points M-fuzzy metric spaces. Advanced in soft computing. 40, 206-215 https://doi.org/10.1007/978-3-540-71441-5_23
  8. Park, J. S., Kim, S. Y., 1999. A fixed point theorem in a fuzzy metric space. F.J.M.S. 1(6), 927-934
  9. Park J. S., Kang H. J., 2007. Common fixed point theorem for a sequence of mappings in intuitionistic fuzzy metric space.Internat. J. KFIS. 7(1), 30-33
  10. Park, J. S., Kwun, Y. C., 2007. Some fixed point theorems in the intuitionistic fuzzy metric spaces. F.J.M.S. 24(2) 227-239
  11. Park, J. S., Kwun, Y. C., Park, J. H., 2005. A fixed point theorem in the intuitionistic fuzzy metric spaces. F.J.M.S.16(2), 137-149
  12. Schweizer, B., Sklar, A., 1960. Statistical metric spaces. Pacific J. Math. 10, 314-334
  13. Vasuki, R., 1998. A common fixed point theorem in a fuzzy metric space. Fuzzy Sets and Systems 97, 395-397 https://doi.org/10.1016/S0165-0114(96)00342-9
  14. Zadeh, L. A., 1965. Fuzzy sets. Inform. and Control 8, 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X

피인용 문헌

  1. Fixed Point Theorems for Weakly Compatible Functions using (JCLR) Property in Intuitionistic Fuzzy Metric Space vol.12, pp.4, 2012, https://doi.org/10.5391/IJFIS.2012.12.4.296
  2. COMMON FIXED POINT THEOREM FOR WEAKLY COMMUTING USING IMPLICIT RELATION ON INTUITIONISTIC FUZZY METRIC SPACE vol.34, pp.1, 2012, https://doi.org/10.5831/HMJ.2012.34.1.77
  3. Some Common Fixed Points for Type(β) Compatible Maps in an Intuitionistic Fuzzy Metric Space vol.13, pp.2, 2013, https://doi.org/10.5391/IJFIS.2013.13.2.147
  4. Common Fixed Point and Example for Type(β) Compatible Mappings with Implicit Relation in an Intuitionistic Fuzzy Metric Space vol.14, pp.1, 2014, https://doi.org/10.5391/IJFIS.2014.14.1.66
  5. COMMON FIXED POINT OF SINGLE AND MULTIVALUED MAPS SATISFYING WEAKLY COMMUTING IN IFMS vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.157