DOI QR코드

DOI QR Code

BETTER UNDERSTANDING OF THE BIOLOGICAL EFFECTS OF RADIATION BY MICROSCOPIC APPROACHES

  • Kim, Eun-Hee (Department of Nuclear Engineering, Seoul National University)
  • Published : 2008.12.31

Abstract

Radiation has stochastic aspects in its generation, its choice of interaction mode during traveling in media, and its impact on living bodies. In certain circumstances, like in high dose environments resulting from low-LET radiation, the variance in its impact on a target volume is negligible. On the contrary, in low dose environments, especially when they are attributed to high-LET radiation, the impact on the target carries with it a large variance. This variation is more significant for smaller target volumes. Microdosimetric techniques, which have been developed to estimate the distribution of radiation energy deposited to cellular and subcellular-sized targets, contrast with macrodosimetric techniques which count only the average value. Since cells and DNA compounds are the critical targets in human bodies, microdosimetry, or dose estimation by microscopic approach, helps one better analyze the biological effects of radiation on the human body. By utilizing microbeam systems designed for individual cell irradiation, scientists have discovered that human cells exhibit radiosensitive reactions without being hit themselves (bystander effect). During the past 10 or more years, a new therapeutic protocol using discontinuous multiple micro-slit beams has been investigated for its clinical application. It has been suggested that the beneficial bystander effect is the essence of this protocol.

Keywords

References

  1. A. M. Kellerer and D. Chemelevsky, 'Concepts of Microdosimetry: I. Quantities,' Rad. Environ. Biophys., 12, 61 (1975) https://doi.org/10.1007/BF02339810
  2. L. J. Goodman and H. H. Rossi 'The Measurement of Dose Equivalents Using Paired Ionization Chambers,' Health Phys., 14, 168 (1968)
  3. L. A. Braby and W. D. Reece, 'Studying Low Dose Effects Using Single Particle Microbeam Irradiation,' Radiat. Prot. Dosim., 31, 311 (1990) https://doi.org/10.1093/oxfordjournals.rpd.a080687
  4. L. A. Braby, 'Microbeam Studies of the Sensitivity of Structures within Living Cells,' PNL-SA-19443, Pacific Northwest national Laboratory (1991)
  5. G. Randers-Pehrson, C. R. Geard, G. Johnson, C. Elliston and D. Brenner, 'The Columbia University Single-Ion Microbeam,' Radiat. Res., 156, 210 (2001) https://doi.org/10.1667/0033-7587(2001)156[0210:TCUSIM]2.0.CO;2
  6. M. Folkard, B. Vojnovic, K. M. Prise, A. G. Bowey, R. J. Locke, G. Schettino and B. D. Michael, 'A Charged-Particle Microbeam: I. Development of an Experimental System for Targeting Cells Individually with Counted Particles,' Int. J. Radiat. Biol. 72, 375 (1997) https://doi.org/10.1080/095530097143158
  7. M. Folkard, B. Vojnovic, K. J. Hollis, A. G. Bowey, S. J. Watts, G. Schettino, K. M. Prise and B. D. Michael, 'A Charged-Particle Microbeam: II. A Single-Particle Micro-Collimation and Detection System,' Int. J. Radiat. Biol., 72, 387 (1997) https://doi.org/10.1080/095530097143167
  8. M. Folkard, G. Schettino, B. Vojnovic, S. Gilchrist, A. G. Michette, S. J. Pfauntsch, K. M. Prise and B. D. Michael, 'A Focused Ultrasoft X-ray Microbeam for Targeting Cells Individually with Submicrometer Accuracy,' Radiat. Res. 156, 796 (2001) https://doi.org/10.1667/0033-7587(2001)156[0796:AFUXRM]2.0.CO;2
  9. K.-D. Greif, H. J. Brede, D. Frankenberg and U. Giesen, 'The PTB Single Ion Microbeam for Irradiation of Living Cells,' Nucl. Instrum. Meth. Phys. Res. Sec. B: Beam Inter. Mater. At., 217, 505 (2003)
  10. S. Incerti, P. Barberet, R. Villeneuve, P. Aguer, E. Gontier, C. Michelet-Habchi, P. Moretto, D. T. Nguyen, T. Pouthier and R. W. Smith, 'Simulation of Cellular Irradiation with the CENBG Microbeam Line Using GEANT4,' IEEE Trans. Nucl. Sci., 51, 1395 (2004)
  11. Y. Kobayashi, T. Funayama, S. Wada, Y. Furusawa, M. Aoki, C. Shao, Y. Yokota, T. Sakashita, Y. Matsumoto, T. Kakizaki and N. Hamada, 'Microbeams of Heavy Charged Particles,' Biol. Sci. Space, 18, 235 (2004) https://doi.org/10.2187/bss.18.235
  12. E. H. Kim, G. M. Sun and M. Jang, 'An Electron Microbeam Cell-Irradiation System at KIRAMS: Performance and Preliminary Experiments,' Radiat. Prot. Dosim., 122, 297 (2006) https://doi.org/10.1093/rpd/ncl455
  13. H. R. Withers, J. M. G. Taylor and B. Maciejewski, 'Treatment Volume and Tissue Tolerance,' Int. J. Radiat. Oncol. Biol. Phys., 14, 751 (1988) https://doi.org/10.1016/0360-3016(88)90098-3
  14. W. Zeman, H. J. Curtis and C. P. Baker, 'Histopathologic Effect of High-Energy-Particle on the Visual Cortex of the Mouse Brain,' Rad. Res., 15, 496 (1961) https://doi.org/10.2307/3571293
  15. D. N. Slatkin, P. Spanne, F. A. Dilmanian and M. Sandborg, 'Microbeam Radiation Therapy,' Med. Phys., 19, 1395 (1992) https://doi.org/10.1118/1.596771
  16. D. N. Slatkin, P. Spanne, F. A. Dilmanian, J. -O. Gebbers and J. A. Laissue, 'Subacute Neuropathological Effects of Microplanar Beams of X-rays from a Synchrotron Wiggler,' Proc. Natl. Acad. Sci. USA, 92, 8783 (1995) https://doi.org/10.1073/pnas.92.19.8783
  17. J. A. Laissue, G. Geiser, P. O. Spanne, F. A. Dilmanian, J. O. Gebbers, M. Geiser, X. Y. Wu, M. S. Makar, P. L. Micca, M. M. Nawrock, D. D. Joel and D. N. Slatkin, 'Neuropathology of Ablation of Rat Gliosarcomas and Contiguous Brain Tissues Using a Microplanar Beam of Synchrotron-Wiggler-Generated X Rays, Int. J. Cancer, 78, 654 (1998) https://doi.org/10.1002/(SICI)1097-0215(19981123)78:5<654::AID-IJC21>3.0.CO;2-L
  18. J. B. Leroux and Y. Herbaut, 'Rossi Counter Measurements in Mixed Fields,' Radiat. Prot. Dosim., 9, 227 (1984)
  19. H. Nose, N. Matsufuji, Y. Kase and T. Kanai, 'Biological Dose Distribution Analysis with Microdosimetry: Experiment and Monte Carlo Simulation,' Proc. Nucl. Sci. Symp., Honolulu, USA, Oct. 26-Nov. 3, 2007
  20. S. Rayadurgam, 'Design of a Wall-Less Proportional Counter for Microdosimetry in Nanometer Dimensions,' M.S. Thesis, Texas A&M University (2005)
  21. M. Dingfelder, D. Hantke, M. Inokuti and H. G. Paretzke, 'Electron Inelastic-Scattering Cross Sections in Liquid Water,' Radiat. Phys. Chem., 53, 1 (1999) https://doi.org/10.1016/S0969-806X(97)00317-4
  22. D. Emfietzoglou and H. Nikjoo, 'The Effect of Model Approximations on Single-Collision Distributions of Low-Energy Electrons in Liquid Water,' Radiat. Res., 163, 98 (2005) https://doi.org/10.1667/RR3281
  23. D. Emfietzoglou and H. Nikjoo, 'Accurate Electron Inelastic Cross Sections and Stopping Powers for Liquid Water over the 0.1-10 keV Range Based on an Improved Dielectric Description of the Bethe Surface,' Radiat. Res., 167, 110 (2007) https://doi.org/10.1667/RR0551.1
  24. J. A. LaVerne and A. Mozumder, 'Concerning Plasmon Excitation in Liquid Water,' Radiat.Res., 133, 282 (1993) https://doi.org/10.2307/3578211
  25. J. E. Turner, R. N. Hamma, M. L. Souleyrette, D. E. Martz, T. A. Rhea and D. W. Schmidt, 'Calculations for Beta Dosimetry Using Monte Carlo Code (OREC) for Electron Transport in Water,' Health Phys., 55, 741 (1988) https://doi.org/10.1097/00004032-198811000-00003
  26. M. Terrissol and A. Beaudre, 'Simulation of Space and Time Evolution of Radiolytic Species Induced by Electrons in Water,' Radiat. Prot. Dosim., 31, 175 (1990) https://doi.org/10.1093/oxfordjournals.rpd.a080660
  27. E. H. Kim, 'Electron Track Simulation Using ETMICRO,' Radiat. Prot. Dosim., 122, 53 (2006) https://doi.org/10.1093/rpd/ncl410
  28. E. H. Kim, 'A New Monte Carlo code ETMICRO-CHEM for Simulating DNA Damage by Electrons,' Proc. 13th Int. Cong. Radiat. Res., San Francisco, USA, Jul. 8-12, 2007
  29. V. A. Semenenko, J. E. Turner and T. B. Borak, 'NOREC, a Monte Carlo Code for Simulating Electron Tracks in Liquid Water,' Radiat. Environ. Biophys., 42, 213 (2003) https://doi.org/10.1007/s00411-003-0201-z
  30. A.Danjo and H. Nishimura, 'Elastic Scattering of Electrons from $H_2O$ Molecule,' J. Phys. Soc. Jap., 54, 1224 (1985) https://doi.org/10.1143/JPSJ.54.1224
  31. A. Katase, K. Ishibachi, Y. Matsumoto, T. Sakae, S. Maezono, E. Murakami, K. Watanabe and H. Maki, 'Elastic Scattering of Electrons by Water Molecules over the Range 100-1000 eV J. Phys. B: At. Mol. Phys., 19, 2715 (1986) https://doi.org/10.1088/0022-3700/19/17/020
  32. B. Grosswednt and E. Waibel, 'Transport of Low Energy Electrons in Nitrogen and Gas,' Nucl. Instrum. Meth., 155, 145 (1978) https://doi.org/10.1016/0029-554X(78)90198-2
  33. S. M. Pimblott, 'Investigation of Various Factors Influencing the Effect of Scavengers on the Radiation Chemistry Following the High-Energy Electron Radiolysis of Water,' J. Phys. Chem. 96, 4485 (1992) https://doi.org/10.1021/j100190a066
  34. A. J. Elliot, D. R. McCracken, G. V. Buxton and N. D. Wood, 'Estimation of Rate Constants for Near-Diffusion-Controlled Reactions in Water at High Temperatures,' J. Chem. Soc. Faraday Trans., 86, 1539 (1990) https://doi.org/10.1039/ft9908601539
  35. G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, and W. Tsang, 'Critical Review of Rate Constants for Reactions of Hydrated Electrons,' J. Phys. Chem. Ref. Data, 17, 513 (1988) https://doi.org/10.1063/1.555805
  36. H. Nikjoo, D. E. Charlton, and D. T. Goodhead, 'Monte Carlo Track Structure Studies of Energy Deposition and Calculation of Initial DSB and RBE,' Adv. Space Res., 14, 161 (1994)
  37. S. G. Sawant, G. Randers-Pehrson, C. R. Geard, D. J. Brenner and E. J. Hall, 'The Bystander Effect in Radiation Oncogenesis: I. Transformation in C3H 10T 1/2 Cells In Vitro can be Initiated in the Unirradiated Neighbors of Irradiated Cells,' Radiat. Res., 155, 397 (2001) https://doi.org/10.1667/0033-7587(2001)155[0397:TBEIRO]2.0.CO;2
  38. S. G. Sawant, G. Randers-Pehrson, N. F. Metting, and E. J. Hall, 'Adaptive Response and the Bystander Effect Induced by Radiation in C3H 10T1/2 Cells in Culture,' Radiat. Res., 156, 177 (2001) https://doi.org/10.1667/0033-7587(2001)156[0177:ARATBE]2.0.CO;2
  39. S. G. Sawant, W. Zheng, K. M. Hopkins, G. Randers-Pehrson, H. B. Lieberman and E. J. Hall, 'The Radiation-Induced Bystander Effect for Clonogenic Survival,' Radiat. Res., 157, 361 (2002) https://doi.org/10.1667/0033-7587(2002)157[0361:TRIBEF]2.0.CO;2
  40. H. Zhou, G. Randers-Pehrson, C. A. Waldren, D. Vannais, E. J. Hall and T. K. Hei, 'Induction of a Bystander Mutagenic Effect of Alpha Particles in Mammalian Cells', Proc. Natl. Acad. Sci., 97, 2099 (2000)
  41. H. Zhou, M. Suzuki, G. Randers-Pehrson, D. Vannais, G. Chen, J. E. Trosko, C. A. Waldren, and T. K. Hei, 'Radiation Risk to Low Fluences of $\alpha$ Particles May Be Greater than We Thought', Proc. Natl. Acad. Sci., 98, 14410 (2001)
  42. W. Morgan, 'Is There a Common Mechanism Underlying Genomic Instability, Bystander Effects and Other Nontargeted Effects of Exposure to Ionizing Radiation? Oncogene, 22, 7094 (2003) https://doi.org/10.1038/sj.onc.1206992
  43. W. Morgan, 'Non-targeted and Delayed Effects of Exposure to Ionizing Radiation: II. Radiation-Induced Genomic Instability and Bystander Effects In Vivo, Clastogenic Factors and Transgenerational Effects,' Radiat. Res., 159, 581 (2003) https://doi.org/10.1667/0033-7587(2003)159[0581:NADEOE]2.0.CO;2
  44. C. Mothersill and C. Seymour, 'Medium from Irradiated Human Epithelial Cells but not Human Fibroblasts Reduces the Clonogenic Survival of Unirradiated Cells, Int. J. Radiat. Biol., 71, 421 (1997) https://doi.org/10.1080/095530097144030
  45. R. C. Miller, G. Randers-Pehrson, C. R. Geard, E. J. Hall and D. J. Brenner, 'The Oncogenic Transforming Potential of the Passage of Single $\alpha$ Particles through Mammalian Cell Nuclei,' Proc. Natl. Acad. Sci., 96, 19 (1999)
  46. M. B. Sowa, M. K. Murphy, J. H. Miller, J. C. McDonald, D. J. Strom and G. A. Kimmel, 'A Variable-Energy Electron Microbeam: A Unique Modality for Targeted Low-LET Radiation,' Radiat. Res., 164, 695 (2005) https://doi.org/10.1667/RR3463.1
  47. M. Renier, T. Brochard, C. Nemoz and W. Thomlinson, 'White-Beam Fast-Shutter for Microbeam Radiation Therapy at the ESRF,' Nucl. Instrum Meth. Phys. Res. A, 479, 656 (2002) https://doi.org/10.1016/S0168-9002(01)00905-6
  48. M. Torikoshi, Y. Ohno, N. Yagi, K. Umetani and Y. Furusawa, 'Dosimetry for a Microbeam Array Generated by Synchrotron Radiation at Spring8,' Eur. J. Radiol., 68, 114 (2008) https://doi.org/10.1016/j.ejrad.2008.04.052
  49. E. A. Siegbahn, J. Stepanek, E. Brauer-Krisch and A. Bravin, Determination of Dosimetric al quantities used in Microbeam Radiation therapy (MRT) with Monte Carlo Simulations,' Am. Assoc. Phys. Med., 33, 3248 (2006)
  50. F. A. Dilmanian and Y. Qu, 'Tissue-Sparing Effect of X-ray Microplanar Beams Particularly in the CNS: Is a Bystander Effect Involved?' Exp. Hematol., 35, 69 (2007) https://doi.org/10.1016/j.exphem.2007.01.014
  51. E. Brauer-Krisch, A. Bravin, L. Zhang and E. Siegbahn, 'Characterization of a Tungsten/Gas Multislit Collimator for Microbeam Radiation Therapy at the European Synchrotron Radiation Facility,' Rev. Sci. Instrum., 76, 64303 (2005) https://doi.org/10.1063/1.1915270
  52. F. A. Dilmanian, Z. Zhong, T. Bacarian, H. Benveniste, P. Romanelli, R. Wang, J. Welwart, T. Yuasa, E. M. Rosen and D. Anschel, 'Interlaced X-ray Microplanar Beams: A Radiosurgery Approach with Clinical Potential,' Proc. Natl. Acad. Space, 103, 9709 (2006)
  53. P. Regnard, G. Le Duc, E. Brauer-Krisch, I. Tropres, E. A. Siegbahn, A. Kurak, C. Clair, H. Bernard, D. Dallery, J. A. Laissue and A. Bravin, 'Irradiation of Intracerebral 9L Gliosarcoma by a Single Array of Microplanar X-Ray Beams from a Synchrotron: Balance between Curing and Sparing,' Phys. Med. Biol., 53, 861 (2008) https://doi.org/10.1088/0031-9155/53/4/003
  54. F. A. Dilmanian, T. M. Button, G. Le Duc, N. Zhong, L. A. Pena, J. A. L. Smith, S. R. Martinez, T. Bacarian, J. Tammam, B. Ren, P. M. Farmer, J. Kalef-Ezra, P. L. Micca, M. M. Nawrocky, J. A. Niederer, F. P. Recksiek, A. Fuchs and E. M. Rosen, 'Response of Rat Intracranial 9L Gliosarcoma to Microbeam Radiation Therapy,' Neuro. Oncol., 4, 26 (2002) https://doi.org/10.1215/15228517-4-1-26
  55. F. A. Dilmanian, Y. Q. S. Liu, C. D. Cool, J. Gilbert, J. F. Hainfeld, C. A. Kruse, J. Laterra, D. Lenihan, M. M. Nawrocky, G. Pappas, C. I. Szc, T. Yuasa, N. Zhong, Z. Zhong and J. W. McDonald, 'X-ray Microbeams: Tumor Therapy and Central Nervous System Research,' Nucl. Instrum. Meth. Phys. Res. A., 548, 30 (2005) https://doi.org/10.1016/j.nima.2005.03.062
  56. M. Mohiuddin, J. H. Stevens, J. E. Reiff, M. S. Huq and N. Suntharalingam, 'Spatially Fractionated (GRID) Radiation for Palliative Treatment of Advanced Cancer,' Radiat. Oncol. Invest., 4, 41 (2007) https://doi.org/10.1002/(SICI)1520-6823(1996)4:1<41::AID-ROI7>3.0.CO;2-M
  57. R. Zwicker, A. Meigooni and M. Mohiuddin, 'Therapeutic Advantage of Grid Irradiation for Large Single Fractions,' Int. J. Radiat. Oncol. Biol. Phys., 58, 1309 (2004) https://doi.org/10.1016/j.ijrobp.2003.07.003
  58. J. E. Reiff, M. S. Hug, M. Mohiuddin and N. Suntharalingam, 'Dosimetric Properties of Megavoltage Grid Therapy,' Int. J. Radiat. Oncol. Biol. Phys., 33, 937 (2004)
  59. A. S. Meigooni, S. A. Parker, J. Zheng, K. J. Kalbaugh, W. F. Regine and M. Mohiuddin, 'Dosimetric Characteristics with Spatial Fractionation Using Electron Grid Therapy,' Med. Dosim., 27, 37 (2002) https://doi.org/10.1016/S0958-3947(02)00086-9