인터넷정보학회논문지 (Journal of Internet Computing and Services)
- 제9권6호
- /
- Pages.165-177
- /
- 2008
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
효율적인 멀티 에이전트 강화 학습을 위한 나이브 베이지만 기반 상대 정책 모델
A Naive Bayesian-based Model of the Opponent's Policy for Efficient Multiagent Reinforcement Learning
초록
멀티 에이전트 강화학습에서 중요한 이슈 중의 하나는 자신의 성능에 영향을 미칠 수 있는 다른 에이전트들이 존재하는 동적 환경에서 어떻게 최적의 행동 정책을 학습하느냐 하는 것이다. 멀티 에이전트 강화 학습을 위한 기존 연구들은 대부분 단일 에이전트 강화 학습기법들을 큰 변화 없이 그대로 적용하거나 비록 다른 에이전트에 관한 별도의 모델을 이용하더라도 현실적이지 못한 가정들을 요구한다. 본 논문에서는 상대 에이전트에 대한 나이브 베이지안 기반의 행동 정책 모델을 소개한 뒤, 이것을 이용한 강화 학습 방법을 설명한다. 본 논문에서 제안하는 멀티 에이전트 강화학습 방법은 기존의 멀티 에이전트 강화 학습 연구들과는 달리 상대 에이전트의 Q 평가 함수 모델이 아니라 나이브 베이지안 기반의 행동 정책 모델을 학습한다. 또한, 표현력은 풍부하나 학습에 시간과 노력이 많이 요구되는 유한 상태 오토마타나 마코프 체인과 같은 행동 정책 모델들에 비해 비교적 간단한 형태의 행동 정책 모델은 이용함으로써 학습의 효율성을 높였다. 본 논문에서는 대표적인 적대적 멀티 에이전트 환경인 고양이와 쥐게임을 소개한 뒤, 이 게임을 테스트 베드 삼아 실험들을 전개함으로써 제안하는 나이브 베이지안 기반의 정책 모델의 효과를 분석해본다.
An important issue in Multiagent reinforcement learning is how an agent should learn its optimal policy in a dynamic environment where there exist other agents able to influence its own performance. Most previous works for Multiagent reinforcement learning tend to apply single-agent reinforcement learning techniques without any extensions or require some unrealistic assumptions even though they use explicit models of other agents. In this paper, a Naive Bayesian based policy model of the opponent agent is introduced and then the Multiagent reinforcement learning method using this model is explained. Unlike previous works, the proposed Multiagent reinforcement learning method utilizes the Naive Bayesian based policy model, not the Q function model of the opponent agent. Moreover, this learning method can improve learning efficiency by using a simpler one than other richer but time-consuming policy models such as Finite State Machines(FSM) and Markov chains. In this paper, the Cat and Mouse game is introduced as an adversarial Multiagent environment. And then effectiveness of the proposed Naive Bayesian based policy model is analyzed through experiments using this game as test-bed.