Effects of $H_2O_2$ and chlorhexidine on MMP-1, TIMP-1,2, Type 1 collagen, fibronectin and UNCL expressions in human periodontal ligament fibroblasts

사람 치주인대섬유모세포에서 MMP-1, TIMP-1,2, Type 1 collagen, fibronectin 및 UNCL 발현에 미치는 $H_2O_2$와 chlorhexidine의 효과

  • Choi, Seong-Mi (Department of Periodontology, School of Dentistry, Cho Sun University) ;
  • Jang, Hyun-Seon (Department of Periodontology, School of Dentistry, Cho Sun University) ;
  • Kim, Byung-Ock (Department of Periodontology, School of Dentistry, Cho Sun University)
  • 최성미 (조선대학교 치의학전문대학원 치주과학교실) ;
  • 장현선 (조선대학교 치의학전문대학원 치주과학교실) ;
  • 김병옥 (조선대학교 치의학전문대학원 치주과학교실)
  • Published : 2008.12.31

Abstract

Purpose: To evaulate the effects of chlorhexidine and $H_2O_2$ on matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase(TIMP-1, TIMP-2), Type 1 collagen, fibronectin and UNCL expressions in human periodontal ligament fibroblasts (hPDLF). Materials and Methods: $1.2{\times}10^{-1}%$, $1.2{\times}10^{-2}%$ and $1.2{\times}10^{-3}%$ CHX and $3{\times}10^{-3}%$, $3{\times}10^{-4}%$ and $3{\times}10^{-5}%$ $H_2O_2$ and mixture of CHX and $H_2O_2$ were applied to hPDLF for 1 min and 30 min. The mRNA expressions of MMP-1, TIMP-1 and 2, Type 1 collagen, fibronectin and UNCL in hPDLF were analysed by RT-PCR. Results: The result were as follows: 1. The expression of UNCL mRNA was higher than that of other mRNAs. 2. $1.2{\times}10^{-3}%$ CHX increased mRNA expressions of hPDLF as application time increased. 3. $H_2O_2$ lower than $3{\times}10^{-3}%$ increased expression of UNCL mRNA, and did not decrease mRNA expression of hPDLF. 4. hPDLF treatment with $1.2{\times}10^{-1}%$ CHX (with or without $H_2O_2$) resulted in no gene expression. 5. hPDLF treatment with $1.2{\times}10^{-2}%$ CHX (with or without $H_2O_2$) for 30 minutes resulted in no gene expression. Conclusion: Because low concentration of CHX and $H_2O_2$ increased UNCL mRNA expression of hPDLF, low concentraction of CHX and $H_2O_2$ may have an antioxidative effect.

Keywords

References

  1. Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000. 1997;12:9-11
  2. Williams. RC. Periodontal disease. New England J of Med. 1990;322:373-382 https://doi.org/10.1056/NEJM199002083220606
  3. Battino M, Bullon P, Wilson M, Newman H. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit Rev in Oral Biol Med. 1999;10:458-476 https://doi.org/10.1177/10454411990100040301
  4. Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol. 1997;24:287-296 https://doi.org/10.1111/j.1600-051X.1997.tb00760.x
  5. Bonnefoy M, Drai J, Kostka T. Antioxidants to slow aging, facts and perspectives. Presse Med. 2002;31:1174-1184
  6. Brecx M, Netuschil L, Reichert B, Schreil G. Effficacy of Listerine, Meridol and Chlorhexidine mouthrinses on plaque, gingivitis and plaque bacteria vitality. J Clin Periodontol. 1990;17:292-297 https://doi.org/10.1111/j.1600-051X.1990.tb01092.x
  7. Walsh TF, Glenwright HD, Hull PS. Clinical effects of pulsed oral irrigation with 0.2% chlorhexidine digluconate in patients with adult periodontitis. J Clin Periodontol. 1992;19:245-248 https://doi.org/10.1111/j.1600-051X.1992.tb00461.x
  8. Giannelli M, Chellini F, Margheri M, Tonelli P, Tani A. Effect of chlorhexidine digluconate on different cell types: a molecular and ultrastructural investigation. Toxicol In Vitro. 2008;22:308-317 https://doi.org/10.1016/j.tiv.2007.09.012
  9. Goultschin J, Levy H. Inhibition of superoxide generation by human polymorphonuclear leukocytes with chlorhexidine. Its possible relation to periodontal disease. J Periodontol. 1986;57:422-424 https://doi.org/10.1902/jop.1986.57.7.422
  10. Battino M, Ferreio MS, Fattorini D, Bullon P. In vitro antioxidant activities of mouthrinses and their components. J Clin Periodontol. 2002;29:462-467 https://doi.org/10.1034/j.1600-051X.2002.290512.x
  11. Firatli E, Unal T, Onan U, Sandalli P. Antioxidative activities of some chemotherapeutics. A possible mechanism in reducing gingival inflammation. J Clin Periodontol. 1994;21:680-683 https://doi.org/10.1111/j.1600-051X.1994.tb00786.x
  12. Beighton D, Decker J, Homer KA. Effects of chlorhexidine on proteolytic and glycosidic enzyme activites of dental plaque bacteria. J Clin Periodontol. 1991;18:85-89 https://doi.org/10.1111/j.1600-051X.1991.tb01693.x
  13. Cronan CA, Potempa J, Travis J, Mayo JA. Inhibition of Porphyromonas gingivalis proteinases by chlorhexidine.: synergistic effect of Zn(II). Oral Microbiol Immunol. 2006;21:212-217 https://doi.org/10.1111/j.1399-302X.2006.00277.x
  14. Gendron R, Grenier D, Sorsa T, Mayrand D. Inhibition of the activities of matrix metalloproteinases 2, 8 and 9 by chlorhexidine. Clin Diagn Lab Immunol. 1999;6:437-439
  15. Cadosch J, Zimmermann U, Ruppert M, Guindy J, Case D, Zappa U. Root surface debridement and endotoxin removal. J Periodontal Res. 2003;38:229-236 https://doi.org/10.1034/j.1600-0765.2003.00376.x
  16. Cabral CT, Fernandes MH. In vitro comparison of chlorhexidine and povidone-iodine on the long-term proliferation and functional activity of human alveolar bone cells. Clin Oral Investing. 2007;11:155-164 https://doi.org/10.1007/s00784-006-0094-8
  17. Cline NV, Layman DL. The effects of chlorhexidine on the attachment and growth of cultured human periodontal cells J Periodontol. 1992;63:598-602 https://doi.org/10.1902/jop.1992.63.7.598
  18. Pucher JJ, Daniel JC. The effects of chlorhexidine digluconate on human fibroblasts in vitro. J Periodontol. 1992;63:526-532 https://doi.org/10.1902/jop.1992.63.6.526
  19. Alleyn CD, O'Neal RB, Strong SL, Scheidt MJ, Van Dyke TE, McPherson JC. The effect of chlorhexidine treatment of root surfaces on the attachment of human gingival fibroblasts in vitro. J Periodontol. 1991;62:434-438 https://doi.org/10.1902/jop.1991.62.7.434
  20. Eren K, Ozmeric N, Sardas s. Monitoring of buccal epithelial cells by alkaline comet assay (single cell gel electrophoresis technique) in cytogenetic evaluation on chlorhexidine. Clin Oral Investing. 2002;6:150-154 https://doi.org/10.1007/s00784-002-0168-1
  21. 강정구, 유형근, 신형식. Chlorhexidine과 Listerine이 인체 치은 섬유모세포의 활성에 미치는 영향. 대한치주과학회지. 1995;25:1-13
  22. Yeung SY, Huang CS, Chan CP, Lin CP, Lin HN, Lee PH. et. al. Antioxidant and pro-oxidant properties of chlorhexidine and its interaction with calcium hydroxide solutions. Int Endod J. 2007;40:837-844 https://doi.org/10.1111/j.1365-2591.2007.01271.x
  23. Meikle MC, Heath JK, Reynolds JJ. Advances in understanding cell interactions in tissue resorption. Relevance to the pathogenesis of periodontal disease and a new hypothesis. J Oral Pathol. 1986;15:239-250 https://doi.org/10.1111/j.1600-0714.1986.tb00616.x
  24. Bartold PM, Wiebkin OW, Thonard JC. The effect of oxygen-derived free radicals on gingival proteoglycans and hyaluronic acid. J Peirodontal Res. 1984;19:390-400 https://doi.org/10.1111/j.1600-0765.1984.tb01012.x
  25. Beaman L, Beaman BL. The role of oxygen and its derivatives in microbial pathogenesis and host defense. Annu Rev Microbiaol. 1984;38:27-48 https://doi.org/10.1146/annurev.mi.38.100184.000331
  26. Waddington RJ, Moseley R, Embery G. Reactive oxygen species: a potential role in the pathogenesis of peridontal diseases. Oral Dis. 2000;6:138-151 https://doi.org/10.1111/j.1601-0825.2000.tb00325.x
  27. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine, 2nd edition. Oxford: Clarendon Press. 1989
  28. Sen Gupta S, Bhattacharjee SB. Induction of repair functions by hydrogen peroxide in Chinese hamster cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1988;53:935-942 https://doi.org/10.1080/09553008814551301
  29. Bose K, Bhaumik G, Ghosh R. Chronic low dose exposure to hydrogen peroxide changes sensitivity of V79 cells to different damaging agents. Indian J Exp Biol. 2003;41: 832-836
  30. 최용선, 김소영, 최성미, 장현선, 김병옥. H2O2와 ascorbic acid가 사람 치주인대섬유모세포의 TIMP-2, Type 1 collagen 및 PDLs22 발현에 끼치는 효과. 대한치주과학회지. 2007;4:655-669
  31. Park JC, Kim YB, Kim HJ, Jang HS, Kim HX, Kim BO. et. al. Isolation and characterization of cultured human periodontal ligament fibroblast-specific cDNAs. Biochem Biophys Res Commun. 2001;282:1145-1153 https://doi.org/10.1006/bbrc.2001.4694
  32. 김병옥, 조일준, 박주철, 국중기, 김흥중, 장현선. 분자생물학을 이용하여 복제노화된 사람 치주인대세포의 세포학적 연구. 대한치주과학회지. 2005;3:623-634
  33. Kubota T, Itagaki M, Hoshino C, Nagata M, Morozumi T, Kobayashi T. et. al. Altered gene expression levels of matrix metalloproteinases and their inhibitors in periodontitis-affected gingival tissue. J Periodontol. 2008;79: 166-173 https://doi.org/10.1902/jop.2008.070159
  34. Dahan M, Nawrocki B, Elkaïm R, Soell M, Bolcato- Bellemin AL, Birembaut P. et. al. Expression of matrix metalloproteinases in healthy and diseased human gingiva. J Clin Periodontol. 2001;28:128-136 https://doi.org/10.1034/j.1600-051x.2001.028002128.x
  35. Hay ED. Cell Biology of extracellular matrix. 2nd ed. Plenum Press, New York and London. 1991. pp 21, 112
  36. Khorramizadeh MR, Tredget EE, Telasky C, Shen Q, Ghahary A. Aging differentially modulates the expresion of collagen and collagenase in dermal fibroblasts. Mol Cell Biochem. 1999;194:99-108 https://doi.org/10.1023/A:1006909021352
  37. Kapila YL, Lancero H, Johnson PW. The response of periodontal ligament cells to fibronectin. J Peiodontol. 1998; 69(9):1008-1019 https://doi.org/10.1902/jop.1998.69.9.1008
  38. Abiko Y, Shimizu N, Yamaguchi M, Suzuki H, Takiguchi H. Effect of aging on functional changes of periodontal tissue cells. Ann Peirodontol. 1998;3:350-369 https://doi.org/10.1902/annals.1998.3.1.350
  39. Pitts G, Pianotti R, Feary TW, McGuiness J, Masurat T. The in vivo effects of an antiseptic mouthwash on odor-producing microorganism. J Dent Res. 1981;60: 1891-1896 https://doi.org/10.1177/00220345810600111101