References
- Lausmaa J. Surface spectroscopic characterization of titanium implant materials. Journal of Electron Spectroscopy and Related Phenomena 1996;81:343-361 https://doi.org/10.1016/0368-2048(95)02530-8
- Okazaki Y, Gotoh E, Manabe T, Kobayashi K. Comparison of metal concentration in rat tibia tissues with various metallic implants. Biomaterials 2004;25;5913-5920 https://doi.org/10.1016/j.biomaterials.2004.01.064
- Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 2005;26; 11-21 https://doi.org/10.1016/j.biomaterials.2004.02.005
- Hallb NJ, Anderson S, Caicedo M, Brasher A, Mikeez K, Jacobs JJ. Effects of soluble metals on human peri-implant cells. J Biomed Mater Res 2005;74A;124-140 https://doi.org/10.1002/jbm.a.30345
-
Gordin DM, Gloriant T, Texier G, Thibon I, Ansel D, Duval JL, Nagel MD. Development of a
$\beta$ -type Ti-12Mo-5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects. J Mat Sci 2004;15; 885-891 - Niinomi M. Recent metallic materials for biomedical applications. Metal Master Trans 2002;33A;477-486
- In Goo Cho, De Zhe Cui, Young Joon Kim, Kyung Ku Lee, Doh Jae Lee. Biocompatibility of Ti-8Ta-3Nb alloy with fetal rat calvarial cell. J Kor Acad Periodontol 2006;36:849-861 https://doi.org/10.5051/jkape.2006.36.4.849
- Nanci A, Wuest JD, Peru L et al. Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 1998;40:324-335 https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
- Taborelli M, Jobin M, Francois P et al. Influence of surface treatments developed for oral implants on the physical and biological properties of titanium. (I) Surface characterization. Clin Oral Impl Res 1997;8:208-216 https://doi.org/10.1034/j.1600-0501.1997.080307.x
- Michaels C, Keller J, Stanford C, Solursh M. In vitro cell attachment of osteoblast-like cells to titanium. J Dent Res 1989;68:276-281
- Bowers KT, Keller JC, Randolph BA et al. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofacial Implants 1992;7:302-310
- Lincks J, Boyan BD, Blanchard CR et al. Response of MG63 osteoblast-like cells to titanium and titanium alloy os dependent of surface roughness and composition. Biomaterials 1998;19:2219-2232 https://doi.org/10.1016/S0142-9612(98)00144-6
- Martin JY, Dean DD, Cochran DL et al. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells(MG63) cultured on previously used titanium surfaces. Clin Oral Impl Res 1996;7:27-37 https://doi.org/10.1034/j.1600-0501.1996.070104.x
- Cooper LF, Masuda T, Whitson SW, Yliheikkila P, Felton DA. Formation of mineralizing osteoblast cultures on machined, titanium oxide grit-blasted, and plasma-sprayed titanium surfaces. Int J Oral Maxillofacial Implants 1999;14: 37-47
- Wennerberg A, Albrektsson T, Andersson B, Krol JJ. A histomorphometric and removal torque study of screw-shaped titanium implants with three different surface toporaphies. Clin Oral Impl Res 1995;6:24-30 https://doi.org/10.1034/j.1600-0501.1995.060103.x
- Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofacial Implants 1996;11:38-45
- Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofacial Implants 1997;12:486-494
- Piattelli A, Manzon L, Scarano A, Paolantonio M, Piattelli M. Histologic and histomorphometric analysis of the bone response to machined and sandblasted titanium implants: An experimental study in rabbits. Int J Oral Maxillofacial Implants 1998;13:805-810
- Nishiguchi S, Nakamura T, Kokubo T et al. The effect of the heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials 1999;20:491-500 https://doi.org/10.1016/S0142-9612(98)90203-4
- Nishiguchi S, Kato H, Fujita H et al. Alkali- and heat-treated porous titanium for orthopedic implant. Biomaterials 2001;22:2525-2533 https://doi.org/10.1016/S0142-9612(00)00443-9
- Nishiguchi S, Kobayashi M, Kim HM et al. Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res 2003;67A:26-35 https://doi.org/10.1002/jbm.a.10540
- Bretaudiere JP, Spillman T, Alkaline phosphatase. In: Bergmeyer HU, ed. Methods of enzymatic analysis, vol 4. Weinheim: Verlag Chemica 1984;75-92
- Sung-Wook Kim and Woo-Kul Lee. Surface modification of biomaterials for hard tissue substitutes to improve biocompatibility and osteoconductivity. J Korean Ind Eng Chem 2005;6:725-730
- Vrouwenvelder WCA, Groot C. and de Groot K. Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxyapatite, titanium alloy, and stainless steel. J Biomed Mater Res 1993;27:465-474 https://doi.org/10.1002/jbm.820270407
- Nygren H, Tengvall P, Lundstrom I. The initial reactions of Tio2 With blood. J Biomed Mater Res 1997;34:487-492 https://doi.org/10.1002/(SICI)1097-4636(19970315)34:4<487::AID-JBM9>3.0.CO;2-G
- Lohmann CH, Sagun R, Sylvia V et al. Surface roughness modulates the response of MG63 osteoblast-like cells to 1,25-(OH)2D3 through regulation of phospholipase A2 activity and activation of protein kinase A. J Biomed Mater Res 1999;47:139-151 https://doi.org/10.1002/(SICI)1097-4636(199911)47:2<139::AID-JBM4>3.0.CO;2-2
- Kim H-M, Miyaji F, Kukobo T, Nakamura T. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res 1996;32:409-17 https://doi.org/10.1002/(SICI)1097-4636(199611)32:3<409::AID-JBM14>3.0.CO;2-B
- Dion L, Baquey C, Monties J.R. and Havlik P. Haemocompatibility of Ti-6Al-4V alloy. Biomaterials 1993;14:122-126 https://doi.org/10.1016/0142-9612(93)90222-N
- Katsikeris N, Listrom RD, and Symington JM. Interface between titanium-6,4 alloy implants and bone. Int J oral Maxillofac Surg 1987;16:473-476 https://doi.org/10.1016/S0901-5027(87)80087-5