Performance Evaluation of Disk Replacement Algorithms in a Shared Cluster

공유 디스크 클러스터에서 버퍼 고체 알고리즘의 성능 평가

  • 조행래 (영남대학교 전자정보공학부)
  • Published : 2008.12.15

Abstract

A shared disk (SD) cluster couples multiple nodes for high performance transaction processing, and all the coupled nodes share a common database at the disk level. To reduce the number of disk accesses, each node caches database pages in its memory buffer. Since a particular page may be cached simultaneously in different nodes, cache consistency should be maintained to ensure that nodes can always access the most recent version of database pages. Most cache consistency schemes proposed in the SD cluster adopted LRU as a buffer replacement algorithm. In this paper, we first present four buffer replacement algorithms that consider the characteristics of the SD cluster. Then we compare the performance of the buffer replacement algorithms. We perform the experiments on a variety of cluster configurations and database workloads. The experiment results show that the proposed algorithms achieve performance improvement up to 5 times of LRU algorithm.

공유 디스크(Shared Disk: SD) 클러스터는 온라인 트랜잭션 처리를 위해 다수 개의 처리 노드들을 연동하는 방식으로, 모든 노드는 디스크 계층에서 데이터 베이스를 공유한다. 빈번한 디스크 액세스를 피하기 위하여 각 노드는 자신의 메모리 버퍼에 최근에 액세스한 페이지들을 캐싱한다. 이때 동일한 페이지가 여러 노드의 메모리 버퍼에 동시에 캐싱될 수 있으므로 각 노드가 최신의 내용을 액세스하기 위해서는 캐싱된 페이지의 일관성이 유지되어야 한다. SD 클러스터에서 기존에 제안된 대부분의 캐쉬 일관성 기법들은 버퍼 교체 알고리즘으로 LRU를 가정하였다. 이와는 달리 본 논문에서는 SD 클러스터의 특징을 고려한 네 가지의 버퍼 교체 알고리즘들을 제안하고 성능을 평가한다. 클러스터 구성과 데이터베이스 부하를 다양하게 변경하면서 실험을 수행하였고, 제안한 알고리즘은 LRU에 비해 최대 5배까지 성능이 향상됨을 확인할 수 있었다.

Keywords

References

  1. M. Yousif, "Shared-Storage Clusters," Cluster Computing, Vol.2, No.4, pp.249-257, 1999 https://doi.org/10.1023/A:1019095112733
  2. DB2 Version 9.1 for z/OS - Data Sharing: Planning and Administration, IBM SC18-9845-01, 2007
  3. M. Vallath, Oracle Real Application Clusters, Elsevier Digital Press, 2004
  4. C. Mohan and I. Narang, "Recovery and Coherency Control Protocols for Fast Intersystem Page Transfer and Fine-Granularity Locking in a Shared Disks Transaction Environment," Proc. VLDB, pp.193-207, 1991
  5. A. Dan and P. Yu, "Performance Analysis of Buffer Coherency Policies in a Multisystem Data Sharing Environment," IEEE Trans. Parallel and Distributed Syst., Vol.4, No.5, pp.289-305, 1993 https://doi.org/10.1109/71.210812
  6. P. Yu and A. Dan, "Performance Analysis of Affinity Clustering on Transaction Processing Coupling Architecture," IEEE Trans. Knowledge and Data Eng., Vol.6, No.5, pp.764-786, 1994 https://doi.org/10.1109/69.317706
  7. K. Ohn and H. Cho, "Dynamic Affinity Cluster Allocation in a Shared Disks Cluster," J. Supercomputing, Vol.37, No.1, pp.47-69, 2006 https://doi.org/10.1007/s11227-006-4650-4
  8. C. Goh, Y. Shu, Z. Huang and B. Ooi, "Dynamic Buffer Management with Extensible Replacement Policies," VLDB J., Vol.15, No.2, pp.99-120, 2006 https://doi.org/10.1007/s00778-004-0145-1
  9. A. Leff, J. Wolf, and P. Yu, "Efficient LRU-Based Buffering in a LAN Remote Caching Atchitecture," IEEE Trans. Parallel and Distributed Syst., Vol.7, No.2, pp.191-206, 1996 https://doi.org/10.1109/71.485508
  10. M. Sinnwell and G. Weikum, "A Cost-Model-Based Online Method for Distributed Caching," Proc. ICDE, pp.532-541, 1997
  11. M. Vilayannur, A. Sivasubramaniam, M. Kandemir, R. Thakur, and R. Ross, "Discretionary Caching for I/O on Clusters," Cluster Computing, Vol.9, No.1, pp.29-44, 2006 https://doi.org/10.1007/s10586-006-4895-y
  12. T. Wong and J. Wilkes, "My Cache or Yours? Making Storage More Exclusive," Proc. 2002 Ann. USENIX Technical Conf., 2002
  13. S. Jiang, K. Davis, and X. Zhang, "Coordinated Multilevel Buffer Cache Management with Consistent Access Locality Quantification," IEEE Trans. Computers, Vol.56, No.1, pp.95-108, 2007 https://doi.org/10.1109/TC.2007.250626
  14. K. Ohn and H. Cho, "Path Conscious Caching of B+ Tree Indexes in a Shared Disks Cluster," J. Parallel and Distributed Computing, Vol.67, No.3, pp.286-301, 2007 https://doi.org/10.1016/j.jpdc.2006.12.001
  15. E. O'Neil, P. O'Neil, and G. Weikum, "The LRU-K Page Replacement Algorithm for Database Disk Buffering," Proc. ACM SIGMOD, pp.297-306, 1993
  16. T. Johnson and D. Shasha, "2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm," Proc. VLDB, pp.439-450, 1994
  17. S. Jiang and X. Zhang, "LIRS: An Efficient Low Inter-reference Recency Set Replacement Policy to Improve Buffer Cache Performance," Proc. SIGMETRICS, pp.31-42, 2002 https://doi.org/10.1145/511399.511340
  18. H. Schwetman, CSIM User's Guide for use with CSIM Revision 18, MCC., 1996