Application of Bootstrap Method to Primary Model of Microbial Food Quality Change

  • Lee, Dong-Sun (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Park, Jin-Pyo (Department of Computer Engineering, Kyungnam University)
  • 발행 : 2008.12.31

초록

Bootstrap method, a computer-intensive statistical technique to estimate the distribution of a statistic was applied to deal with uncertainty and variability of the experimental data in stochastic prediction modeling of microbial growth on a chill-stored food. Three different bootstrapping methods for the curve-fitting to the microbial count data were compared in determining the parameters of Baranyi and Roberts growth model: nonlinear regression to static version function with resampling residuals onto all the experimental microbial count data; static version regression onto mean counts at sampling times; dynamic version fitting of differential equations onto the bootstrapped mean counts. All the methods outputted almost same mean values of the parameters with difference in their distribution. Parameter search according to the dynamic form of differential equations resulted in the largest distribution of the model parameters but produced the confidence interval of the predicted microbial count close to those of nonlinear regression of static equation.

키워드

참고문헌

  1. McMeekin TA, Olley J, Ratkowsky DA, Ross T. Predictive microbiology: Towards the interface and beyond. Int. J. Food Microbiol. 73: 395-407 (2002) https://doi.org/10.1016/S0168-1605(01)00663-8
  2. Baranyi J, Pin C. Modeling microbiological safety. pp. 383-401. In: Food Process Modeling. Tijskens LMM, Hertog MLATM, Nicolai BM (eds). Woodhead Publishing, Cambridge, UK (2001)
  3. Lee DS, Hwang K-J, Seo I, Park JP, Paik H-D. Estimation of shelf life distribution of seasoned soybean sprouts using the probability of Bacillus cereus contamination and growth. Food Sci. Biotechnol. 15: 773-777 (2006)
  4. Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23: 277-294 (1994) https://doi.org/10.1016/0168-1605(94)90157-0
  5. McKellar RC, Lu X. Primary models. pp. 21-62. In: Modeling Microbial Responses in Food. McKellar RC, Lu X (eds). CRC Press, Boca Raton, FL, USA (2004)
  6. Baranyi J, Roberts TA. Mathematics of predicted food microbiology. Int. J. Food Microbiol. 26: 199-218 (1995) https://doi.org/10.1016/0168-1605(94)00121-L
  7. Poschet F, Bernaerts K, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis. Math. Comput. Simulat. 65: 231-243 (2004) https://doi.org/10.1016/j.matcom.2003.12.002
  8. Park JP, Kim HW, Lee DS, Paik H-D. Seasonal and market group variation in the microbiological quality of seasoned soybean sprouts. Food Sci. Biotechnol. 16: 325-328 (2007)
  9. Park JP, Lee DS, Paik H-D. Distribution functions describing the microbiological contamination of seasoned soybean sprouts. Food Sci. Biotechnol. 17: 659-663 (2008)
  10. Park JP, Lee DS. Analysis of temperature effects on microbial growth parameters and estimation of food shelf life with confidence band. J. Food Sci. Nutr. 13: 104-111 (2008) https://doi.org/10.3746/jfn.2008.13.2.104
  11. Poschet F, Geeraerd AH, Scheerlinck N, Nicolai BM, Van Impe JF. Monte Carlo analysis as a tool to incorporate variation on experimental data in predictive microbiology. Food Microbiol. 20: 285-295 (2003) https://doi.org/10.1016/S0740-0020(02)00156-9
  12. Moreau Y, Couvert O, Thuault D. Estimation of the confidence band of bacterial growth simulation. The Sym'Previus approach. Acta Horticulturae 674: 415-420 (2005)
  13. Manly BFJ. Randomization, Bootstrap, and Monte Carlo Methods in Biology. 3rd ed. Chapman & Hall/CRC, Boca Raton, FL, USA. pp. 169-202 (2007)
  14. Schaffner DW. Application of a statistical bootstrapping technique to calculate growth rate variance for modeling psychrotrophic pathogen growth. Int. J. Food Microbiol. 24: 309-314 (1994) https://doi.org/10.1016/0168-1605(94)90128-7
  15. Lee DS, Hwang K-J, An DS, Park JP, Lee HJ. Model on the microbial quality change of seasoned soybean sprouts for on-line shelf life prediction. Int. J. Food Microbiol. 18: 285-293 (2007)
  16. Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman & Hall/CRC, Boca Raton, FL, USA. pp. 11-16 (1993)
  17. Yafune A, Ishiguro M. Bootstrap approach for constructing confidence intervals for population pharmacokinetic parameters. I: A use of bootstrap standard error. Stat. Med. 18: 581-599 (1999) https://doi.org/10.1002/(SICI)1097-0258(19990315)18:5<581::AID-SIM47>3.0.CO;2-1
  18. Hass CN, Rose JB, Gerba CP. Quantitative Microbial Risk Assessment. John Wiley & Sons, New York, NY, USA. pp. 278-304 (1999)
  19. Davison AC, Hinkley DV. Bootstrap Methods and Their Application. Cambridge University Press, Cambridge, UK. pp. 261-266 (1997)
  20. Saguy I. Optimization methods and applications. pp. 264-320. In: Computer-aided Techniques in Food Technology. Saguy I (ed). Marcel Dekker, New York, NY, USA (1983)
  21. Motulsky H, Christopoulos A. Fitting Models to Biological Data Using Linear and Nonlinear Regression. Oxford University Press, New York, NY, USA. pp. 29-137 (2004)
  22. Labuza TP, Kamman JF. Reaction kinetics and accelerated tests simulations as a function of temperature. pp. 71-115. In: Computer-Aided Techniques in Food Technology. Saguy I (ed). Marcel Dekker, New York, NY, USA (1983)
  23. Corbo MR, Del Nobile MA, Sinigaglia M. A novel approach for calculating shelf life of minimally processed vegetables. Int. J. Food Microbiol. 106: 69-73 (2006) https://doi.org/10.1016/j.ijfoodmicro.2005.05.012
  24. Koseki S, Isobe S. Prediction of pathogen growth on iceberg lettuce under real temperature history during distribution from farm to table. Int. J. Food Microbiol. 104: 239-248 (2005) https://doi.org/10.1016/j.ijfoodmicro.2005.02.012
  25. Hietala KA, Lynch ML, Allshouse JC, Johns CJ, Roane TM. A mathematical model of Saccharomyces cerevisiae growth in response to cadmium toxicity. J. Basic Microb. 46: 196-202 (2006) https://doi.org/10.1002/jobm.200510061
  26. Nauta MJ. Uncertainty and variability in predictive models of microorganisms in food. pp. 44-66. In: Modeling Microorganisms in Food. Brul S, Van Gerwen S, Zwietering M (eds). Woodhead Publishing, Cambridge, UK (2007)