Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • 발행 : 2008.12.31

초록

Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

키워드

참고문헌

  1. Takeda K, Akira S. Toll-like receptors in innate immunity. Int. Immunol. 17: 1-14 (2005)
  2. Medzhitov R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1: 135-145 (2001) https://doi.org/10.1038/35100529
  3. O'Neill LA. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol. 25: 687-693 (2004) https://doi.org/10.1016/j.it.2004.10.005
  4. Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: Differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol. Interv. 3: 466-477 (2003) https://doi.org/10.1124/mi.3.8.466
  5. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: Mutations in Tlr4 gene. Science 282: 2085-2088 (1998) https://doi.org/10.1126/science.282.5396.2085
  6. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443-451 (1999) https://doi.org/10.1016/S1074-7613(00)80119-3
  7. Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S. Discrimination of bacterial lipoproteins by toll-like receptor 6. Int. Immunol. 13: 933-940 (2001) https://doi.org/10.1093/intimm/13.7.933
  8. Takeuchi O, Sato S, Horiuchi T, Hoshino K, Takeda K, Dong Z, Modlin RL, Akira S. Cutting edge: Role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169: 10-14 (2002) https://doi.org/10.4049/jimmunol.169.1.10
  9. Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol. 5: 561-570 (2003) https://doi.org/10.1046/j.1462-5822.2003.00301.x
  10. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 410: 1099-1103 (2001) https://doi.org/10.1038/35074106
  11. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA, Ghosh S. A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303: 1522-1526 (2004) https://doi.org/10.1126/science.1094351
  12. Yarovinsky F, Zhang D, Andersen JF, Bannenberg GL, Serhan CN, Hayden MS, Hieny S, Sutterwala FS, Flavell RA, Ghosh S, Sher A. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 308: 1626-1629 (2005) https://doi.org/10.1126/science.1109893
  13. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 413: 732-738 (2001) https://doi.org/10.1038/35099560
  14. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303: 1526-1529 (2004) https://doi.org/10.1126/science.1093620
  15. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A toll-like receptor recognizes bacterial DNA. Nature 408: 740-745 (2000) https://doi.org/10.1038/35047123
  16. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A. Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198: 513-520 (2003) https://doi.org/10.1084/jem.20030162
  17. Rhee SH, Hwang D. Murine toll-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF-kappaB and expression of the inducible cyclooxygenase. J. Biol. Chem. 275: 34035-34040 (2000) https://doi.org/10.1074/jbc.M007386200
  18. Urizar NL, Moore DD. Gugulipid: A natural cholesterol-lowering agent. Annu. Rev. Nutr. 23: 303-313 (2003) https://doi.org/10.1146/annurev.nutr.23.011702.073102
  19. Sinal CJ, Gonzalez FJ. Guggulsterone: An old approach to a new problem. Trends Endocrin. Met. 13: 275-276 (2002) https://doi.org/10.1016/S1043-2760(02)00640-9
  20. Gujral ML, Sareen K, Tangri KK, Amma MK, Roy AK. Antiarthritic and anti-inflammatory activity of gum guggul (Balsamodendron mukul Hook). Indian J. Physiol. Pharmacol. 4: 267-273 (1960)
  21. Sharma JN. Comparison of the anti-inflammatory activity of Commiphora mukul (an indigenous drug) with those of phenylbutazone and ibuprofen in experimental arthritis induced by mycobacterial adjuvant. Arznei. -Forsch. 27: 1455-1457 (1997)
  22. Satyavati GV. Gum guggul (Commiphora mukul)--the success story of an ancient insight leading to a modern discovery. Indian J. Med. Res. 87: 327-335 (1988)
  23. Singh RB, Niaz MA, Ghosh S. Hypolipidemic and antioxidant effects of Commiphora mukul as an adjunct to dietary therapy in patients with hypercholesterolemia. Cardiovasc. Drugs Ther. 8: 659-664 (1994) https://doi.org/10.1007/BF00877420
  24. Wu J, Xia C, Meier J, Li S, Hu X, Lala DS. The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol. Endocrinol. 16: 1590-1597 (2002) https://doi.org/10.1210/me.16.7.1590
  25. Owsley E, Chiang JY. Guggulsterone antagonizes farnesoid X receptor induction of bile salt export pump but activates pregnane X receptor to inhibit cholesterol 7 alpha-hydroxylase gene. Biochem. Bioph. Res. Co. 304: 191-195 (2003) https://doi.org/10.1016/S0006-291X(03)00551-5
  26. Brobst DE, Ding X, Creech KL, Goodwin B, Kelley B, Staudinger JL. Guggulsterone activates multiple nuclear receptors and induces CYP3A gene expression through the pregnane X receptor. J. Pharmacol. Exp. Ther. 310: 528-535 (2004) https://doi.org/10.1124/jpet.103.064329
  27. Burris TP, Montrose C, Houck KA, Osborne HE, Bocchinfuso WP, Yaden BC, Cheng CC, Zink RW, Barr RJ, Hepler CD, Krishnan V, Bullock HA, Burris LL, Galvin RJ, Bramlett K, Stayrook KR. The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol. Pharmacol. 67: 948-954 (2005) https://doi.org/10.1124/mol.104.007054
  28. Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J. Biol. Chem. 279: 47148-47158 (2004) https://doi.org/10.1074/jbc.M408093200
  29. Ichikawa H, Aggarwal BB. Guggulsterone inhibits osteoclastogenesis induced by receptor activator of nuclear factor-kappaB ligand and by tumor cells by suppressing nuclear factor-kappaB activation. Clin. Cancer Res. 12: 662-668 (2006) https://doi.org/10.1158/1078-0432.CCR-05-1749
  30. Cheon JH, Kim JS, Kim JM, Kim N, Jung HC, Song IS. Plant sterol guggulsterone inhibits nuclear factor-kappaB signaling in intestinal epithelial cells by blocking IkappaB kinase and ameliorates acute murine colitis. Inflamm. Bowel Dis. 12: 1152-1161 (2006) https://doi.org/10.1097/01.mib.0000235830.94057.c6
  31. Hwang JH, Choi SY, Ko HC, Jang MG, Jin YJ, Kang SI, Park JG, Chung WS, Kim SJ. Anti-inflammatory effect of the hot water extract from Sasa quelpaertensis leaves. Food Sci. Biotechnol. 16: 728-733 (2007)
  32. Park JY, Park CM, Kim JJ, Noh KH, Cho CW, Song YS. The protective effect of chlorophyll a against oxidative stress and inflammatory processes in LPS-stimulated macrophages. Food Sci. Biotechnol. 16: 205-211 (2007)
  33. Youn HS, Lee JY, Saitoh SI, Miyake K, Kang KW, Choi YJ, Hwang DH. Suppression of MyD88- and TRIF-dependent signaling pathways of toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem. Pharmacol. 72: 850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
  34. Youn HS, Lee JY, Fitzgerald KA, Young HA, Akira S, Hwang DH. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: Molecular targets are TBK1 and RIP1 in TRIF complex. J. Immunol. 175: 3339-3346 (2005) https://doi.org/10.4049/jimmunol.175.5.3339
  35. Youn HS, Saitoh SI, Miyake K, Hwang DH. Inhibition of homodimerization of toll-like receptor 4 by curcumin. Biochem. Pharmacol. 72: 62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
  36. Youn HS, Lee JY, Saitoh SI, Miyake K, Hwang DH. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem. Bioph. Res. Co. 350: 866-871 (2006) https://doi.org/10.1016/j.bbrc.2006.09.097
  37. Murakami A, Ohigashi H. Targeting NOX, iNOS, and COX-2 in inflammatory cells: Chemoprevention using food phytochemicals. Int. J. Cancer 121: 2357-2363 (2007) https://doi.org/10.1002/ijc.23161
  38. Simmons DL, Levy DB, Yannoni Y, Erikson RL. Identification of a phorbol ester-repressible v-src-inducible gene. P. Natl. Acad. Sci. USA 86: 1178-1182 (1989)
  39. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. 38: 97-120 (1998) https://doi.org/10.1146/annurev.pharmtox.38.1.97