Phenolic Compounds from the Fruit Body of Phellinus linteus Increase Alkaline Phosphatase (ALP) Activity of Human Osteoblast-like Cells

  • Lyu, Ha-Na (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Lee, Dae-Young (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Kim, Dong-Hyun (School of Chemistry, Manchester Interdisciplinary Biocentre, The University of Manchester) ;
  • Yoo, Jong-Su (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Lee, Min-Kyung (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University) ;
  • Kim, In-Ho (Korea Food Research Institute) ;
  • Baek, Nam-In (Graduate School of Biotechnology and Plant Metabolism Research Center, Kyung Hee University)
  • 발행 : 2008.12.31

초록

Secondary metabolites from the fruit body of Phellinus linteus were evaluated for their proliferative effect on human osteoblast-like cells. 3-[4,5-Dimethylthiazole-2-y1]-2,5-diphenyl-tetraxolium bromide (MTT) assay and alkaline phosphatase (ALP) activity assay were used to assess the effect those isolates on the human osteoblast-like cell line (Saos-2). Activity-guided fractionation led to the isolation of ALP-activating phenolic compounds through the extraction of P. linteus, solvent partitioning, and repeated silica gel and octadecyl silica gel (ODS) column chromatographic separations. From the result of spectroscopic data including nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared spectroscopy (IR), the chemical structures of the compounds were determined as 4-(4-hydroxyphenyl)-3-buten-2-one(1), 2-(3',4'-dihydroxyphenyl)-1,3-benzodioxole-5-aldehyde (2), 4-(3,4-dihydroxyphenyl)-3-buten-2-one (3), 3,4-dihydroxybenzaldehyde (4), and protocatechuic acid methyl ester (5), respectively. This study reports the first isolation of compounds 1-3 and 5 from P. linteus. In addition, all phenolic compounds stimulated proliferation of the osteoblast-like cells and increased their ALP activity in a dose-dependent manner ($10^{-8}$ to $10^{-1}\;mg/mL$). The present data demonstrate that phenolic compounds in P. linteus stimulated mineralization in bone formation caused by osteoporosis. The bone-formation effect of P. linteus seems to be mediated, at least partly, by the stimulating effect of the phenolic compounds on the growth of osteoblasts.

키워드

참고문헌

  1. Dai YC, Xu MQ. Studies on the medicinal polypore, Phellinus baumii and its kin, P. linteus. Mycotaxon 67: 191-200 (1998)
  2. Heo J. Dongeuibogam (Publication on Oriental Medicine in Chosun Dynasty). Namsandang Press, Seoul, Korea. p. 719 (1993)
  3. Kang H-S, Choi J-H, Cho W-K, Park J-C, Choi J-S. A sphingolipid and tyrosinase inhibitors from the fruiting body of Phellinus linteus. Arch. Pharm. Res. 27: 742-750 (2004) https://doi.org/10.1007/BF02980143
  4. Choi J-H, Ha T-M, Kim Y-H, Rho Y-D. Studies on the main factors affecting the mycelial growth of Phellinus linteus. Korean J. Mycol. 24: 214-222 (1996)
  5. Han S-B, Lee C-W, Jeon Y-J, Hong N-D, Yoo I-D, Yang K-H, Kim H-M. The inhibitory effect of polysaccharides isolated from Phellinus linteus on tumor growth and metastasis. Immuopharmacology 41: 157-164 (1999) https://doi.org/10.1016/S0162-3109(98)00063-0
  6. Ikekawa T, Nakanishi M, Uehara N, Chihara G, Fukuoka F. Antitumor action of some basidiomycetes, especially Phellinus linteus. Gann 69: 155-157 (1968)
  7. Ji J-H, Kim M-N, Chung C-K, Ham S-S. Antimutagenic and cytotoxicity effects of Phellinus linteus extracts. J. Korean Soc. Food. Sci. Nutr. 29: 322-328 (2000)
  8. Song K-S, Cho S-M, Lee J-H. B-lymphocyte stimulating polysaccharide from mushroom Phellinus linteus. Chem. Pharm. Bull. 43: 2105-2108 (1995) https://doi.org/10.1248/cpb.43.2105
  9. Lee J-W, Baek S-J, Bang K-W, Kang S-W, Kang S-M, Kim B-Y, Ha I-S. Biological activity of polysaccharide extracted from the fruit body and cultured mycelia of Phellinus linteus IY001. Korean J. Food Sci. Technol. 32: 726-735 (2000)
  10. Kim H-M, Han S-B, Oh G-T, Kim Y-H, Hong D-H, Hong N-D, Yoo I-D. Stimulation of humoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Int. J. Immunopharmacol. 18: 295-303 (1996) https://doi.org/10.1016/0192-0561(96)00028-8
  11. Lee J-W, Bang K-W. Biological activity of Phellinus spp. Korean J. Food Ind. Nutr. 6: 25-33 (2001)
  12. Carmichael J, De Graff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of tetrazolium-based semiautomated colorimetric assay assessment of chemosensitivity testing. Cancer Res. 47: 936-942 (1987)
  13. Bowers GN, McComb RB, Upretti A. 4-Nitrophenyl phosphate - characterization of high - purity materials for measuring alkaline phosphatase activity in human serum. Clin. Chem. 27: 135-143 (1981)
  14. Dempster DW, Lindsay R. Pathogenesis of osteoporosis. Lancet 34: 797-801 (1993)
  15. Lindsay R. Managing osteoporosis: Current trends, future possibilities. Geriatrics 42: 35-39 (1987)
  16. Pole HAP, Felsenberg D, Hanley DA, Stenpan J, Munoz-Torres M, Wolkins TJ, Qui-sheng G, Galich M, Vandormael K, Yates AJ. Multinational placebo-controlled, randomised trial of the effects of alendronate on bone density and fracture risk in post-menopausal women with law bone mass: Results of the FOSIT. Osteoporosis Int. 9: 461-468 (1999) https://doi.org/10.1007/PL00004171
  17. Ettinger B. Overview of estrogen replacement therapy: A historical perspective. P. Soc. Exp. Biol. Med. 217: 2-5 (1998)
  18. Schafer JM, Lee ES, O'Regan RM, Yao K, Jordan VC. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin. Cancer Res. 6: 4373-4380 (2000)
  19. Kronenberg F, Fugh-Berman A. Complementary and alternative medicine for menopausal symptoms: A review of randomized, controlled trials. Ann. Intern. Med. 137: 805-813 (2002) https://doi.org/10.7326/0003-4819-137-10-200211190-00009
  20. Farnsworth NR, Bingel AS, Cordell GA, Crane FA, Fong HS. Potential value of plant as sources of new antifertility agents. J. Parmcol. Sci. 64: 717-754 (1975) https://doi.org/10.1002/jps.2600640504
  21. Hofmann WE, Everds N, Pignatello M, Solter PF. Automated and semiautomated analysis of rat alkaline phosphate isoenzyme. Toxicol. Pathol. 22: 633-638 (1994) https://doi.org/10.1177/019262339402200607
  22. Kress BC, Mizrahi IA, Armour KW, Marcus R, Emkey RD, Santora AC. Use of bone alkaline phosphatase to monitor alendronate therapy in individual postmenopausal osteoporotic women. Clin. Chem. 45: 1009-1017 (1999)
  23. Ha H-K, Ho J-N, Shin S-M, Kim H-J, Koo S-J, Kim I-H, Kim C-S. Effects of Eucommiae Cortex on osteoblast-like cell proliferation and osteoclast inhibition. Arch. Pharm. Res. 26: 929-936 (2003) https://doi.org/10.1007/BF02980202
  24. Delmas PD. Biochemical markers of bone turnover. J. Bone Miner. Res. 8: S549-S555 (1993) https://doi.org/10.1002/jbmr.5650081323
  25. Eastell R, Robins SP, Colwell T, Assiri AMA, Riggs BL, Russell RG. Evaluation of bone turnover in type I osteoporosis using biochemical markers specific for both bone formation and bone resorption. Osteoporosis Int. 3: 255-260 (1993) https://doi.org/10.1007/BF01623829
  26. Ducki S, Hadfield JA, Lawrence NJ, Liu CY, McGown AT, Zhang W. Isolation of E-1-(4'-hydroxyphenyl)-but-1-en-3-one from Scutellaria barbata. Planta Med. 62: 185-186 (1996)
  27. Tagashira M, Ohtake Y. A new antioxidative 1,3-benzodioxole from Melissa officinalis. Planta Med. 64: 555-558 (1998) https://doi.org/10.1055/s-2006-957513
  28. Baranovsky A, Schmitt B, Fowler DJ, Schneider B. Synthesis of new biosynthetically important diarylheptanoids and their oxa- and fluoro-analogues by three different strategies. Synthetic Commun. 33: 1019-1045 (2003) https://doi.org/10.1081/SCC-120016367
  29. Tsuda T, Watanabe M, Ohshima K, Yamamoto A, Kawakishi S, Osawa T. Antioxidative components isolated from the seed of tamarind (Tamarindus indica L.). J. Agr. Food Chem. 42: 2671-2674 (1994) https://doi.org/10.1021/jf00048a004
  30. Reddy PS, Jamil K, Madhusudhan P, Anjani G, Das B. Antibacterial activity of isolates from Piper longum and Taxus baccata. Pharm. Biol. 39: 236-238 (2001) https://doi.org/10.1076/phbi.39.3.236.5926
  31. Liu GT, Ahang TM, Wang BE, Wang YW. Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes. Biochem. Pharmacol. 43: 147-152 (1992) https://doi.org/10.1016/0006-2952(92)90271-J
  32. Watanabe K, Hayashi H, Mori Y. Effect of a benzylidene derivative, a novel antirheumatic agent, on IL-1 production. Pharm. Res. 28: 57-72 (1993)
  33. Kikuzaki H, Kawai Y, Nakatani N. 1,1-Diphenyl-2-picrylhydrazyl radical scavenging active compounds from greater cardamom (Amomum subulatum Roxb.). J. Nutr. Sci. Vitaminol. 47: 167-171 (2001) https://doi.org/10.3177/jnsv.47.167
  34. Wang Y, Hasuma T, Yano Y, Morishima Y, Matsui-Yuasa I, Otani S. Induction of apoptosis in CTLL-2 cells by protocatechualdehyde. Anticancer Res. 21: 1095-1101 (2001)
  35. Wilairat R, Kijjoa A, Pinto M, Nascimento MSJ, Silva AMS, Eaton G, Herz W. Constituents of Schisandra verruculosa and their cytotoxic effect on human cancer cell lines. Pharm. Biol. 44: 411-415 (2006) https://doi.org/10.1080/13880200600794105
  36. Gray TK, Flynn TC, Gray KM, Nabell LM. $17{\beta}-Estradiol$ acts directly on the clonal osteoblastic cell line UMR106. P. Natl. Acad. Sci. USA 84: 6267-6271 (1987)
  37. Yamaguchi M, Gao YH. Anabolic effect of genistein and genistin on bone metabolism in the femarol-metaphyseal tissues of elderly rats: The genistein effect is enhanced by zinc. Mol. Cell. Biochem. 178: 377-382 (1998) https://doi.org/10.1023/A:1006809031836
  38. Nishibe S, Hisada S, Inagaki I. Lignans of Trachelospermum liukiuense and T. foetidum. Chem. Pharm. Bull. 21: 674-675 (1973) https://doi.org/10.1248/cpb.21.674
  39. Sakamura S, Terayama Y, Kawakatsu S, Ichihara A, Saito H. Conjugated serotonins and phenolic constituents in safflower seed. Agr. Biol. Chem. Tokyo 44: 2951-2954 (1980) https://doi.org/10.1271/bbb1961.44.2951