DOI QR코드

DOI QR Code

대장균에서 이소프레노이드 생합성 경로의 대사공학적 개량에 의한 아스타잔틴의 생산성 향상

Enhanced Production of Astaxanthin by Metabolic Engineered Isoprenoid Pathway in Escherichia coli

  • 이재형 (부경대학교 기초과학연구소) ;
  • 서용배 (자연과학대학 미생물학과) ;
  • 김영태 (자연과학대학 미생물학과)
  • Lee, Jae-Hyung (Basic Science Research Institute, Pukyong National University) ;
  • Seo, Yong-Bae (Department of Microbiology, Pukyong National University) ;
  • Kim, Young-Tae (Department of Microbiology, Pukyong National University)
  • 발행 : 2008.12.30

초록

이 연구의 목적은 생물공학적으로 이소프레노이드 생합성 유전자를 클로닝하여 이들을 형질전환시킨 대장균을 제조하여 이들을 숙주로 사용하여 아스타잔틴의 생산을 증가시키는 것이다. 본 연구진은 선행연구에서 Paracoccus haeundaensis로부터 아스타잔틴 생산에 관여하는 6개의 아스타잔틴 생합성 유전자군을 보고하였고, 이들 유전자들을 발현 벡타(pCR-XL-TOPO-Crt)에 재조합한 후 이 벡터를 대장균에 형질 전환시켜서 건조중량으로 400 ${\mu}g$/g의 아스타잔틴을 생산하였다. 아스타잔틴의 생산성을 증가시키기 위해서 대장균으로부터 이소프레노이드 생합성 경로에 관여하는 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), farnesyl diphosphate (FPP) synthase (ispA), isopentenyl (IPP) diphossphate isomerase (idi) 유전자들을 클로닝하였고, 이들 유전자를 (pCR-XL-TOPOCrt-full)와 같이 대장균에 각각 공발현시켰다. idi 유전자와 아스타잔틴 생산에 관여하는 아스타잔틴 생합성 유전자군이 함께 형질 전환된 BL21(DE3) Codon Plus RIL 대장균를 배양하였을때, 건조중량으로 1,200 ${\mu}g$/g의 아스타잔틴을 생산하였다. 따라서 본 연구 결과, 이소프레노이드 생합성 유전자와 아스타잔틴 생합성 유전자군을 공발현 시킬 때 아스타잔틴의 생산이 3배 증가하였다.

The goal of this study is to increase production of astaxanthin in recombinant Escherichia coli by engineered isoprenoid pathway. We have previously reported structural and functional analysis of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. The carotenoid biosynthesis gene cluster involved in astaxanthin production contained six carotenogenic genes (crtW, crtZ, crtY, crtI, crtB, and crtE genes) and recombinant E. coli harboring six carotenogenic genes from P. haeundaensis produced 400 ${\mu}g$/g dry cell weight (DCW) of astaxanthin. In order to increase production of astaxanthin in recombinant E. coli, we have cloned 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (lytB), farnesyl diphosphate (FPP) synthase (ispA), and isopentenyl (IPP) diphossphate isomerase (idi) in the isoprenoid pathway from E. coli and coexpressed these genes in recombinant E. coli harboring the astaxanthin biosynthesis genes. This engineered E. coli strain containing both isoprenoid pathway gene and astaxanthin biosynthesis gene cluster produced 1,200 ${\mu}g$/g DCW of astaxanthin, resulting 3-fold increased production of astaxanthin.

키워드

참고문헌

  1. Alper, H., Y. S. Jin, J. F. Moxley and G. Stephanopoulos. 2005. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng. 7, 155-164. https://doi.org/10.1016/j.ymben.2004.12.003
  2. Amar, E. C., V. Kiron, S. Satoh and T. Watanabe. 2004. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol. 16, 527-537. https://doi.org/10.1016/j.fsi.2003.09.004
  3. Bertram, J. S. and A. L. Vine. 2005. Cancer prevention by retinoids and carotenoids: independent action on a common target. Biochim. Biophys. Acta. 1740, 170-178. https://doi.org/10.1016/j.bbadis.2005.01.003
  4. Bubrick, P. 1991. Production of astaxanthin from Haematococcus. Bioresour. Technol. 38, 237-239. https://doi.org/10.1016/0960-8524(91)90161-C
  5. Chew, B. P. and J. S. Park. 2004. Carotenoid action on the immune esponse. J. Nutr. 134, 257S-261S. https://doi.org/10.1093/jn/134.1.257S
  6. Fujita, T., M. Satake, T. Watanabe, C. Kitajima, W. Miki, K. Yamaguchi and S. Konosu. 1983. Pigmentation of cultured red sea bream with astaxanthin diester purified from krill oil. Nippon Suisan Gakkaishi. 49, 1855-1865. https://doi.org/10.2331/suisan.49.1855
  7. Fujisaki, S., H. Hara, Y. Nishimura, K. Horiuchi and T. Nishino. 1990. Cloning and nucleotide sequence of the ispA gene responsible for farnesyl diphosphate synthase activity in Escherichia coli. J. Biochem. 108, 995-1000. https://doi.org/10.1093/oxfordjournals.jbchem.a123327
  8. Giovannucci, E., A. Ascherio, E. B. Rimm, M. J. Stampfer, G. A. Colditz and W. C. Willett. 1995. Intake of carotenoids and retinol in relation to risk of prostate cancer. J. Natl. Cancer. Inst. 87, 1767-1776. https://doi.org/10.1093/jnci/87.23.1767
  9. Harker, M., J. Hirschberg and A. Oren. 1998. Paracoccus marcusii sp. nov., an orange Gram‐negative coccus. Int. J. Syst. Bacteriol. 48, 543-548. https://doi.org/10.1099/00207713-48-2-543
  10. Hix, L. M., S. F. Lockwood and J. S. Bertram. 2004. Bioactive carotenoids: potent antioxidants and regulators of gene expression. RedoxRep. 9, 181-191.
  11. Johnson, E. A. and G. H. An. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11, 297-326. https://doi.org/10.3109/07388559109040622
  12. Johnson, E. A., D. B. Schuman and G. H. An. 1989. Isolation of mutants with increase astaxanthin content. Appl. Environ. Microbiol. 55, 116-124.
  13. Kurihara, H., H. Koda, S. Asami, Y. Kiso and T. Tanaka. 2002. Contribution of the antioxidative property of astaxanthin to its protective effect on the promotion of cancer metastasis in mice treated with restraint stress. Life Sci. 70, 2509-2520. https://doi.org/10.1016/S0024-3205(02)01522-9
  14. Lee, J. H., Y. S. Kim, T. J. Choi, W. J. Lee and Y. T. Kim. 2004. Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int. J. Syst. Evol. Microbiol. 54, 1699-1702. https://doi.org/10.1099/ijs.0.63146-0
  15. Lee, J. H. and Y. T. Kim. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370, 86-95. https://doi.org/10.1016/j.gene.2005.11.007
  16. Lee, J. H. and Y. T. Kim. 2006. Functional expression of the astaxanthin biosynthesis genes from a marine bacterium, Paracoccus haeundaensis. Biotechnol. Lett. 28, 1167-1173. https://doi.org/10.1007/s10529-006-9072-0
  17. Lee, J. H., Y. B. Seo, S. Y. Jeong, S. W. Nam and Y. T. Kim. 2007. Functional analysis of combinations in astaxanthin biosynthesis genes from Paracoccus haeundaensis. Biotecnol. Bioprocess Eng. 12, 312-317. https://doi.org/10.1007/BF02931110
  18. Lee, P. C., B. N. Mijts and C. Schmidt-Dannert. 2004. Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 65, 538-546.
  19. Lesburg, C. A., G, Zhai, D. E. Cane and D. W. Christianson. 1997. Crystal structure of pentalenene synthase: Mechanistic insights on terpenoid cyclization reactions in biology. Science 277, 1820-1824. https://doi.org/10.1126/science.277.5333.1820
  20. Maateer, S., A. Coulson, N. Mclennan and M. Masters. 2001. The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid bioysynthesis. J. Bacteriol. 183, 7403-7407. https://doi.org/10.1128/JB.183.24.7403-7407.2001
  21. Miller, M., W. M. Yoneyama and M. Soneda. 1976. Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int. J. Syst. Bacteriol. 26, 286-291. https://doi.org/10.1099/00207713-26-2-286
  22. Misawa, N., Y. Satomi, K. Kondo, A. Yokoyama, S. Kajiwara, T. Saito, T. Ohtani and W. Miki. 1995. Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J. Bacteriol. 177, 6575-6584. https://doi.org/10.1128/jb.177.22.6575-6584.1995
  23. Murtaugh, M. A., K. N. Ma, J. Benson, K. Curtin, B. Caan and M. L. Slattery. 2004. Antioxidants, carotenoids and risk of rectal cancer. Am. J. Epidemiol. 159, 32-41. https://doi.org/10.1093/aje/kwh013
  24. Neuman, I., H. Nahum and A. Ben-Amotz. 2000. Reduction of exercise-induced asthma oxidative stress by lycopene, a natural antioxidant. Allergy 55, 1184-1189. https://doi.org/10.1034/j.1398-9995.2000.00748.x
  25. Ralley, L., E. M. Enfissi, N. Misawa, W. Schuch, P. M. Bramley and P. D. Fraser. 2004. Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 39, 477-486. https://doi.org/10.1111/j.1365-313X.2004.02151.x
  26. Rohmer, M. 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16, 565-574. https://doi.org/10.1039/a709175c
  27. Starks, C. M., K. Back, J. Chappell and J. P. Noel. 1997. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science 277, 1815-1820. https://doi.org/10.1126/science.277.5333.1815
  28. Tao, L., L. W. Wagner, P. E. Rouvière and Q. Cheng. 2006. Metabolic engineering for synthesis of aryl carotenoids in Rhodococcus. Appl. Microbiol. Biotechnol. 70, 222-228. https://doi.org/10.1007/s00253-005-0064-0
  29. Tarshis, L. C., M. Yan, C. D. Poulter and J. C. Sacchettini. 1994. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-Å resolution. Biochemistry 33, 10871-10877. https://doi.org/10.1021/bi00202a004
  30. Tsubokura, A., H. Yoneda and H. Mizuta, 1999. Paracoccus carotinifaciens sp. nov., a new aerobic Gram‐negative astaxanthin‐ producing bacterium. Int. J. Syst. Bacteriol. 49, 277-282. https://doi.org/10.1099/00207713-49-1-277
  31. Wang, C. W., M. K. Oh and J. C. Liao. 1999. Engineered isoprenoid pathway enhances astaxanthin production in Escherichia coli. Biotechnol. Bioeng. 62, 235-241. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<235::AID-BIT14>3.0.CO;2-U
  32. Wendt, K. U., K. Poralla and G. E. Schulz. 1997. Structure and function of a squalene cyclase. Science 277, 1811-1815. https://doi.org/10.1126/science.277.5333.1811
  33. Yoon, S. W., Y. M. Lee, J. E. Kim, S. H. Lee, J. H. Lee, J. Y. Kim, K. H. Jung, Y. C. Shin, J. D. Keasling and S. W. Kim. 2006. Enhanced lycopene production in Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol. Bioeng. 94, 1025-1032. https://doi.org/10.1002/bit.20912
  34. Yokoyama, A., H. Izumida and W. Miki. 1994. Production of astaxanthin and 4-ketozeaxanthin by the marine bacterium, Agrobacterium aurantiacum. Biosci. Biotechnol. Biochem. 58, 1842-1844. https://doi.org/10.1271/bbb.58.1842

피인용 문헌

  1. Enhanced Production of Astaxanthin by Archaea Chaperonin in Escherichia coli vol.25, pp.12, 2015, https://doi.org/10.5352/JLS.2015.25.12.1339