Effect of Tempering on the Mechanical Properties of Martensitic Stainless Steels Fabricated by Centrifugal Casting

원심주조한 마르텐사이트 스테인레스강의 기계적 성질에 미치는 템퍼링 영향

  • Published : 2008.05.20

Abstract

A new approach of producing martensitic structure for guide-roll materials was developed using centrifugal casting instead of classic overlay welding process. Centrifugal casting offered a simpler process, fewer defects and even microstructures. Especially in terms of thermal fatigue cracking which usually occurs in the HAZ of welding beads of used continuous caster guide roll materials made by overlay welding process. A typical tensile strength of 1,600 MPa was obtained by this process and was higher than typical tensile strength($800{\sim}1,200\;MPa$) with overlay welding technique. Tempering at $400{\sim}550^{\circ}C$ for 2 hrs was observed to have significant precipitate hardening effect which increases strength and elongation. Nitrogen content from the Cr-N input in the casting process was found to have positive contribution to decrease the volume fraction of ${\delta}$-ferrite which directly corresponds to increasing strength of the roll materials.

Keywords

References

  1. J. Beddoes and J. G. Parr: ASM International, U.S.A., "Introduction to Stainless Steels", (1999) 239
  2. C. G. Kim, J. H. Yoon and D. S. Whang: Int. J. of KCORE, "Effects of Nb, V on the Mechanical Properties of Continuous Casting Rolls Overlaidhang", 18(2), (2004)70-76
  3. Y. Murai, S. Natsume, and S. Nishiyama: "Development of Welding Materials for Continuous Casting Rolls", Kobe Technical Report, 40(3), (1990) 101
  4. Bruce D. Horn: Iron and steel Engineer, "Continuous caster rolls: Design, Function and performance", 6 (1996) 49-51
  5. E.R.Baek, S.Ahn, K.H.Kim, T.S.Yoon, and B.R.Ma: RIST Research Reportn No.94A216, "Development of the Hardfacing Technology to Prolong Continuous Caster Steel Mill Roll Life", (1995) 53-84
  6. Lincoln Electric Co.,: Hardfacing C7.720, "Rebulding caster rolls-hardfacing with submerged arc welding", 6 (1994) 1-6
  7. IIW Commission XII: Welding in the World, "Recommandations for submerged arc stainless steel strip cladding", 11(7/8), (1973) 199-207
  8. R. Demuzere: SoudoMetal's Technical Report No.930067, "Submerged arc and electroslag strip cladding", (1993) 1-78
  9. V. G. Gavriljuk and H. Berns: Springer-Verlag, Berlin, "High Nitrigen Steels", (1999)
  10. C. F. Jactczak, J. A. Larson, S. W. Shin: Society of Automotive Engineerings, Inc., "Retained austenite and its measurements by X-ray diffraction", (1980)
  11. W. T. DeLong: Weld, "Ferrite in austenitic stainless steel weld metal", 53(7), (1974) 273s-286s
  12. D. J. Kotecki and T. A. Siewert: Weld, "WRC-1992 constitution diagram for stainless steel weld metals: a modification of the WRC-1988 Diagram", 71(5), (1992) 171s-178s
  13. ASM International, "Stainless Steel", Metal Handbook, 10th ed., 1 (1990) 841
  14. B. H. Jeong and Y. S. Ahn: J. Kor. Inst. Met. & Mater., 30 (1998) 1763
  15. K. J. Irvine, D. J. Crowe and F. B. Pickering: J. Iron and steel Inst.(1964) 63
  16. F. B. Pickering: Int. Met. Rev., Dec., (1979) 1
  17. H. S. Link and P. W. Marshall: Trans. Am. Soc. Met., 44 (1952) 549
  18. John L. Walter, Melvin R. Jackson and Chester T. Sims: Alloying, ASM, Metals Park, Ohio., (1988) 214
  19. F. B. Pickering: Physical Metallurgy and the Design of Steels, Applied Science Publishers LTD, (1978) 130, 173
  20. B. S. Lement et al: Trans A. S. M., 46 (1954) 851
  21. L. J. Klinger et al: Trans A. I. M. E., 46 (1954) 1557
  22. M. A. Grossman: Trans A. S. M., 167 (1946) 39
  23. J. M. Capus: Iron and Steel Inst. Spec. Rep., 76 (1962) 51
  24. T. Gladman et al: Iron and Steel Institute, (1971) 68
  25. W. S. Owen: Trans A. S. M., 46 (1954) 812
  26. E. Nes and P.Fartum, Scandinavian J. of Metallutgy, 12 (1983). 107