DOI QR코드

DOI QR Code

The Electrochemical Studies of Two Osmium Redox Polymer Films and Their Application for Multi-Detecting Biosensor

전기화학적인 방법을 이용한 두 개의 오스뮴 고분자 막의 고정화 및 다중 검출 바이오센서에 관한 연구

  • 태건식 (단국대학교 첨단과학대학 생명과학과) ;
  • 김진구 (단국대학교 첨단과학대학 화학과) ;
  • 최영봉 (단국대학교 첨단과학대학 화학과) ;
  • 김혁한 (단국대학교 첨단과학대학 화학과)
  • Published : 2008.08.31

Abstract

Screen printed carbon electrodes (SPEs) modified with co-immobilized osmium-based redox polymers can be used to apply multi-detecting biosensors. In this study, we report our initial studies of multi-detecting biosensor concepts using two osmium-based redox polymers for horseradish peroxidase-mediated reduction of ${H_2}{O_2}$ coupled to glucose oxidase-mediated oxidation of glucose. We target to synthesize two osmium redox polymers of potentials use, a chloride-containing redox polymer ($E^{O'}$ + 0.520 vs. Ag/AgCl) and a methoxy-containing redox polymer $E^{O'}$ + 0.150 vs. Ag/AgCl). The former show good catalytic electrical signals with horseradish peroxidase and the latter's redox polymer is to be an effective redox mediator of glucose oxidation by glucose oxidase.

다중 생체시료 검출을 위한 바이오센서 연구를 위하여 각기 두 전위를 갖는 오스뮴 고분자를 함께 탄소 전극 (Screen Printed Carbon Electrodes) 위에 고정하였다. 새로운 개념의 다중 생체시료 검출 바이오센서 연구위하여 과산화수소의 환원과 글루코스의 산화에 관여하는 환원 효소와 산화 효소를 각각 이용하였다. 실험 목적에 위하여 염소 작용기 ($E^{O'}$ + 0.520 vs. Ag/AgCl)와 메톡시 작용기 ($E^{O'}$ + 0.150 vs. Ag/AgCl)를 각각 포함하는 두 개의 오스뮴 고분자를 합성하였다. 전자는 과산화수소의 환원에 대하여 좋은 촉매전류신호를 보였고, 후자는 당의 산화에 대하여 효과적인 촉매전류신호를 보였다.

Keywords

References

  1. L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962) https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
  2. A. L. Crumbliss, H. A. O Hill, and D. J. Page, 'The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system' J. Electroanal. Chem. Interfacial Electrochem., 206, 327 (1986) https://doi.org/10.1016/0022-0728(86)90280-9
  3. M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985) https://doi.org/10.1016/S0003-2670(00)82720-8
  4. D. A. Gough, J. Y. Lucisano, and P. H. S. Tse, 'Twodimensional enzyme electrode sensor for glucose' Anal. Chem., 57, 2351 (1985) https://doi.org/10.1021/ac00289a042
  5. A. P. F. Turner, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985)
  6. K. Mckenna and A. Brajter-Toth, 'Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines' Anal. Chem., 59, 954 (1987) https://doi.org/10.1021/ac00134a006
  7. P. D. Hale and T. A. Skotheim, 'Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/ galactose systems' Synth. Met., 28, 853 (1989) https://doi.org/10.1016/0379-6779(89)90613-9
  8. B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991) https://doi.org/10.1021/j100168a047
  9. M. S. Vreeke, K. T. Yong, and A. Heller, 'A Thermostable Hydrogen Peroxide Sensor Based on "Wiring" of Soybean Peroxidase' Anal. Chem., 67, 4247 (1995) https://doi.org/10.1021/ac00119a007
  10. R. M. Ianiello, T. J. Lindsay, and A. M. Yacynych, 'Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes' Anal. Chem. 54, 1098 (1982) https://doi.org/10.1021/ac00244a019
  11. O. Miyawaki and L. B. Wingard, Jr., 'Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon' Biotech. Bioeng. 26, 1364 (1984) https://doi.org/10.1002/bit.260261114
  12. S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, 'Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes' J. Chem. Soc. Dalton Trans., 2247 (1985)
  13. C. Taylor, G. Kenausis, I. Katakis, and A. Heller, "Wiring" of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with [(Os-4,4'-dimethoxy- 2,2'-bipyridine)$Cl]^{+/2+}$ , J. Electroanal. Chem., 396, 511 (1995) https://doi.org/10.1016/0022-0728(95)04080-8
  14. G. Kenausis, C. Taylor, R. Rajagopalan, and A. Heller, "Wiring" of glucose oxidase and lactate oxidase within a hydrogel made with poly(vinyl pyridine) complexed with [Os(4,4'-dimethoxy-2,2'-$bipyridine)_{2}Cl]^{+/2+}$ , J. Chem. Soc. Faraday Trans., 92, 4131 (1996) https://doi.org/10.1039/ft9969204131
  15. Y. Zhang, H-H. Kim, N. Mano, M. Dequaire, and A. Heller, 'Simple enzyme-amplified amperometric detection of a 38-base oligonucleotide at 20 pmol L-1 concentration in a 30-L droplet', Anal Bioanal Chem., 374, 1051 (2002)
  16. R. J. Forster and J. G. Vos, 'Synthesis, Characterization, and Properties of a Series of Osmium- and Ruthenium- Containing Metallopolymers' Macromolecule, 23, 4372 (1990) https://doi.org/10.1021/ma00222a008
  17. Zakeeruddin, S. M.; D. M. Fraser, D. M.; Nazeeruddin, M.-K.; Gratzel, M. 'Towards mediator design: Characterization of tris-(4,4'-substituted-2,2'-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of Aspergillus niger and other redox proteins' J. Electroanal. Chem. 337, 253 (1992) https://doi.org/10.1016/0022-0728(92)80542-C