DOI QR코드

DOI QR Code

Hollow Sb93Pt7 Nanospheres Prepared by Galvanic Displacement Reaction for a Highly Li Reactive Material

  • Kim, Hyun-Jung (Department of Applied Chemistry, Hanyang University) ;
  • Cho, Jae-Phil (Department of Applied Chemistry, Hanyang University)
  • Published : 2008.08.31

Abstract

The synthesis of hollow ${Sb_93}{Pt_7}$ nanospheres smaller than 30 nm with a shell consisting of smaller nanoparticles, with an average particle size of ${\sim}$ 3 nm is reported. The formation of this alloy is driven by galvanic replacement reaction involving Sb nanoparticles and ${H_2}{PtCl_6} $ without need for any additional reductants. Further, the reaction proceeds selectively as long as the redox potential between two metals is favorable. The capacities of the hollow samples are 669 and 587mAh/g at rates of 1 and 7C, respectively, while those values for the nanoparticles are 647 and 480mAh/g at rates of 1, 7C, respectively. This result shows the significantly improved capacity retention of the hollow sample at higher C rates, indicating that high surface area of the hollow nanospheres makes the current density more effective than that for the solid counterpart.

Keywords

References

  1. H. Lee, J. Cho, Nano Lett. 7, 2638 (2007) https://doi.org/10.1021/nl071022n
  2. Y. Kwon, H. Kim, S. -G. Doo, and J. Cho, Chem. Mater. 19, 982 (2007) https://doi.org/10.1021/cm062035p
  3. Y. S. Jung, K. T. Lee, J. H. Ryu, D. Im, and S. M. Oh, J. Electrochem. Soc. 152, A1452 (2005) https://doi.org/10.1149/1.1933616
  4. D. Deng and J. Y. Lee, Chem. Mater. 20, 1481 (2008)
  5. Y. Wang and J. Y. Lee, T. C. Deivaraj, J. Mater. Chem. 14, 362 (2004) https://doi.org/10.1039/b312476b
  6. M. Winter, J. O. Besenhard, Electrochim. Acta, 45, 31 (1999) https://doi.org/10.1016/S0013-4686(99)00191-7
  7. I. -S. Kim, G. E. Blomgren, and P. N. Kumta, Electrochem. Solid State Lett. 7, A44 (2004) https://doi.org/10.1149/1.1643792
  8. M. Noh, Y. Kwon, H. Lee, J. Cho, Y. Kim, and M. G. Kim, Chem. Mater. 17, 1926 (2005) https://doi.org/10.1021/cm0481372
  9. M. Noh, Y. Kim, M. Kim, H. Lee, H. kim, Y. Kwon, Y. Lee, and J. Cho, Chem. Mater. 17, 3320 (2005) https://doi.org/10.1021/cm0504337
  10. Y. Yang, M. Wachtler, M. Winter, and J. O. Besenhard, Electrochem. Solid State Lett. 2, 161 (1999) https://doi.org/10.1149/1.1390769
  11. Y. Kwon, M. G. Kim, Y. Kim, Y. Lee, and J. Cho, Electrochem. Solid State Lett. 9, A34 (2006) https://doi.org/10.1149/1.2138447
  12. H. Lee, M. G. Kim, C. H. Choi, Y. K. Sun, C. S. Yoon, and J. Cho, J. Phys. Chem. B. 109, 20719 (2005) https://doi.org/10.1021/jp052620y
  13. E. Kim, D. Son, T. -G. Kim, J. Cho, B. Park, K. S. Ryu, and S. H. Chang, Angew. Chem. Int. Ed. 43, 5987 (2004) https://doi.org/10.1002/anie.200454080
  14. E. Kim, M. G. Kim, Y. Kim, and J. Cho, Electrochem. Solid State Lett. 8, A452 (2005) https://doi.org/10.1149/1.1979454
  15. E. Kim, Y. Kim, M. G. Kim, and J. Cho, Electrochem. Solid State Lett. 9, A156 (2006) https://doi.org/10.1149/1.2164587
  16. H. Kim, G. -S. Park, E. Kim, S. -G. Doo, and J. Cho, J. Electrochem. Soc. 153, A1633 (2006) https://doi.org/10.1149/1.2212061
  17. S. -W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc. 124, 7642 (2002) https://doi.org/10.1021/ja026032z
  18. Q. Li, H. Liu, M. Han, J. Zhu, Y. Liang, Z. Xu, and Y. Song, Adv. Mater. 17, 1995 (2005) https://doi.org/10.1002/adma.200500174
  19. Y. Hu, J. Chen, W. Chen, X. Lin, and X. Li, Adv. Mater. 15, 726 (2003) https://doi.org/10.1002/adma.200304687
  20. R. -K. Chiang and R. -T. Chiang, Inorganic Chem. 46, 369 (2007) https://doi.org/10.1021/ic061846s
  21. X. Cao, Li Gu, L. Zhuge, W. Gao, W. Wang, and S. Wu, Adv. Funct. Mater. 16, 896 (2006) https://doi.org/10.1002/adfm.200500422
  22. Y. Sun and Y. Xia, Science 298, 2176 (2002) https://doi.org/10.1126/science.1077229
  23. Y. Sun, B. T. Mayers, and Y. Xia, Adv. Mater. 15, 641 (2003) https://doi.org/10.1002/adma.200301639
  24. Y. Sun and Y. Xia, J. Am. Chem. Soc. 126, 3892 (2004) https://doi.org/10.1021/ja039734c
  25. H. -P. Liang, Y. -G. Guo, H. -M. Zhang, J. -S. Hu, L. -J. Wan, and C. -L. Bai, Chem. Commu. 1496 (2004)
  26. Y. Vasquez, A. K. Sra, and R. E. Schaak, J. Am. Chem. Soc. 127, 12504 (2005) https://doi.org/10.1021/ja054442s
  27. F. Cheng, H. Ma, Y. Li, and J. Chen, Inorganic Chem. 46, 2007 (2007)
  28. G. S. Metraux, Y. C. Cao, R. Jin, C. A. Mirkin, Nano Lett. 3, 2003 (2003)
  29. H. -P. Liang, H. -M. Zhang, J. -S. Hu, Y. -G. Guo, L. -J. Wan, and C. -L, Bai, Angew. Chem. Int. Ed. 43, 1540 (2004) https://doi.org/10.1002/anie.200352956
  30. T. Watanabe, Nanoplating: Microstructure control theory of plated film and data base of plated film microstructure, Elsevier Publishers, Amsterdam, Netherlands, 2004
  31. H. Kim and J. Cho, Electrochim. Acta 52, 4197 (2007) https://doi.org/10.1016/j.electacta.2006.11.033
  32. Q. Lu, Z. Liu, L. Li, S. Xie, J. Kong, and D. Zhao, Adv. Mater. 13, 286 (2001) https://doi.org/10.1002/1521-4095(200102)13:4<286::AID-ADMA286>3.0.CO;2-5
  33. C. Kim, M. Noh, M. Choi, J. Cho, and B. Park, Chem. Mater. 17, 3297 (2005) https://doi.org/10.1021/cm048003o

Cited by

  1. Deposition of Zn-containing films using atmospheric pressure plasma jet vol.13, pp.1, 2014, https://doi.org/10.1515/chem-2015-0020