DOI QR코드

DOI QR Code

Research Trend of Electrolyte Materials for Lithium Rechargeable Batteries

리튬 2차전지용 전해질 소재의 개발 동향

  • Lee, Young-Gi (Research Team of Next-Generation Energy Technology, Electronics and Telecommunications Research Institute (ETRI)) ;
  • Kim, Kwang-Man (Research Team of Next-Generation Energy Technology, Electronics and Telecommunications Research Institute (ETRI))
  • 이영기 (한국전자통신연구원 차세대에너지기술연구팀) ;
  • 김광만 (한국전자통신연구원 차세대에너지기술연구팀)
  • Published : 2008.11.30

Abstract

In lithium-ion batteries(LIB), the development of electrolytes had mainly focused on the characteristics of lithium cobalt oxide($LiCoO_2$) cathode and graphite anode materials since the commercialization in 1991. Various studies on compatibility between electrode and electrolytes had been actively developed on their interface. Since then, as they try to adopt silicon and tin as anode materials and three components(Ni, Mn, Co), spinel, olivine as cathode materials for advanced lithium batteries, conventional electrolyte materials are facing a lot of challenges. In particular, requirements for electrolytes performance become harsh and complicated as safety problems are seriously emphasized. In this report, we summarized the research trend of electrolyte materials for the electrode materials of lithium rechargeable batteries.

1991년 lithium-ion battery(LIB)가 상용화된 이후, 초기 전해질은 주로 lithium cobalt oxide($LiCoO_2$) 양극과 graphite 음극의 특성에 집중되어 연구되어 왔다. 또한 전극과 전해질 간의 적합성에 대한 다양한 연구들이 이들 간의 계면에서 활발히 진행되었다. 이후 Si, Sn 등의 비탄소계 음극소재와 3성분(Ni, Mn, Co)계, spinel, olivine 등의 양극 소재를 리튬 2차전지에 채용하려 함에 따라 기존 전해질 재료들도 많은 도전에 직면하게 되었다. 특히, 안전성 문제가 최근 심각하게 부각됨에 따라 전해질의 요구특성은 점점 복잡해지고 까다로워지고 있다. 본 고에서는 이러한 전극소재 변화에 따른 전해질 소재의 다양한 변화와 그 특성에 대하여 구성요소 별로 연구 및 개발 동향을 정리하였다.

Keywords

References

  1. J. M. Tarascon and M. Armand, Nature, 414, 359 (2001) https://doi.org/10.1038/35104644
  2. K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, Mater. Res. Bull., 15, 1159 (1993)
  3. R. J. Gummow, D. C. Liles, and M. M. Thackeray, Mater. Res. Bull., 28, 235 (1993) https://doi.org/10.1016/0025-5408(93)90157-9
  4. J. Thomas, Nature Materials, 2, 705 (2003) https://doi.org/10.1038/nmat1010
  5. Z. X. Shu, R. S. McMillan, J. J. Murray, and J. Davidson, J Electrochem. Soc., 143, 2230 (1996) https://doi.org/10.1149/1.1836985
  6. J. O. Besenhard, K. V. Werner, and M. Winter, US Patent 5,916,708 (1999)
  7. T. Nakajima, K. Dan, and M. Koh, J. Fluorine Chem., 87, 221 (1998) https://doi.org/10.1016/S0022-1139(97)00149-8
  8. J. I. Yamaki, I. Yamazaki, M. Egashira, and S. Okada, J. Power Sources, 102, 288 (2001) https://doi.org/10.1016/S0378-7753(01)00805-9
  9. M. C. Smart, B. V. Ratnakumar, V. S. Ryan-Mowrey, S. Surampudi, G.K.S. Prakash, J. Hu, and I.Cheung, J. Power Sources, 119/121, 359 (2003) https://doi.org/10.1016/S0378-7753(03)00266-0
  10. J. Barthel, M. Wuhr, R. Buestrich, and H. J. Hores, J. Electrochem. Soc., 142, 2527 (1995) https://doi.org/10.1149/1.2050048
  11. W. Xu and C. A. Angell, Electrochem. Solid-State Lett., 3, 366 (2000) https://doi.org/10.1149/1.1391150
  12. M. Schmidt, U. Heider, A. Kuehner, R. Oesten, M. Jungnitz, N. Ignat'ev, and P. Sartori, J. Power Sources, 97/98, 557 (2001) https://doi.org/10.1016/S0378-7753(01)00640-1
  13. B. Simon and J. P. Boeuve, U.S. Patent 5,626,981 (1997)
  14. J. Barker and F. Gao, U.S. Patent 5,712,059 (1998)
  15. Y. Naruse, S. Fujita, and A. Omaru, U.S. Patent 5,714,281 (1998)
  16. J. B. Gong, T. Tsumura, H. Nakamura, M. Yoshio, H. Yoshitake, and T. Abe, 202th Meeting of the Electrochemical Society, Abstract No. 200 (2002)
  17. C. Wang, H. Nakamura, H. Komatsu, M. Yoshio, and H. Yoshitake, J. Power Sources, 74, 142 (1998) https://doi.org/10.1016/S0378-7753(98)00017-2
  18. K. M. Abraham and S. B. Brummer, Lithium Batteries, J. Gabano, Ed., Academic Press, New York (1983)
  19. K. Xu, Chem. Rev., 104, 4303 (2004) https://doi.org/10.1021/cr030203g
  20. M. Adachi, K. Tanaka, and K. Sekai, J. Electrochem. Soc., 143, 3992 (1996) https://doi.org/10.1149/1.1837326
  21. J. B. Kerr, and M. Tian, U.S. Patent 6,045,952 (2000)
  22. Y. G. Lee, and J. Cho, Electrochim. Acta, 52, 7404 (2007) https://doi.org/10.1016/j.electacta.2007.06.032
  23. M. Yoshio, H. Yoshitake, and K. Abe, 204th Meeting of the Electrochemical Society, Abstract NO. 280 (2003)
  24. H. Lee, J. H. Lee, S. Ahn, H. J. Kim, and J. J. Cho, Electrochem. Solid-State Lett., 9, A307 (2006) https://doi.org/10.1149/1.2193072
  25. H. S. Lee, X. Q. Yang, C. L. Xiang, J. McBreen, and L. S. Choi, J. Electrochem. Soc., 145, 2813 (1998) https://doi.org/10.1149/1.1838719
  26. X. Sun, H. S. Lee, X. Q. Yang, and J. McBreen, J. Electrochem. Soc., 146, 3655 (1999) https://doi.org/10.1149/1.1392529
  27. X. Sun, H. S. Lee, X. Q. Yang, and J. McBreen, J. Electrochem. Soc., 149, A355 (2002) https://doi.org/10.1149/1.1447942
  28. C. W. Lee, R. Venkatachalapathy, and J. Prakash, Electrochem. Solid-State Lett., 3, 63 (2000) https://doi.org/10.1149/1.1390959
  29. K. Xu, S. Zhang, J. L. Allen, and T. R. Jow, J. Electrochem. Soc., 149, A1079 (2002) https://doi.org/10.1149/1.1490356
  30. J. I. Yamaki, I. Yamazaki, M. Egashira, and S. Okada, J. Power Sources, 102, 288 (2001) https://doi.org/10.1016/S0378-7753(01)00805-9
  31. J. Devynck, R. Mossina, J. Pingarron, and B. Tremillon, J Electrochem. Soc., 131, 2274 (1984) https://doi.org/10.1149/1.2115239
  32. C. Scordilis-Kelly, and R. T. Carlin, J Electrochem. Soc., 141, 873 (1994) https://doi.org/10.1149/1.2054849
  33. 송충의, 최두성, 화학세계, 2005년 2월, p24
  34. Nikkei Electronics, 2005년 1월 3일, p24
  35. H. Sakaebe and H. Matsumoto, Electrochem. Commun., 5, 594 (2003) https://doi.org/10.1016/S1388-2481(03)00137-1
  36. 이상영, 電子部品, 8月, p50 (2006).
  37. P. Arora and Z. Zhang, Chem. Rev., 104, 4419 (2004) https://doi.org/10.1021/cr020738u
  38. P. V. Wright, Br. Polymer J., 7, 319 (1975) https://doi.org/10.1002/pi.4980070505
  39. M. B. Armand, J. M. Chabagno, and M. Duclot, Second International Meeting on Solid Electrolytes, St. Andrews, Scotland, Sept. 20-22 (1978)
  40. 박정기, 이경희, 고분자과학과 기술, 9(2), 125 (1998)
  41. 강영구, 이창진, 고분자과학과 기술, 14(4), 396 (2003)
  42. F. B. Dias, L. Plomp, and J. B. J. Veldhuis, J. Power Sources, 88, 169 (2000) https://doi.org/10.1016/S0378-7753(99)00529-7
  43. K. Murata, S. Izuchi, and Y. Yoshihisa, Electrochim. Acta, 45, 1501 (2000) https://doi.org/10.1016/S0013-4686(99)00365-5
  44. 이상영, 박순용, 안병인, 송헌식, 이승진, 조진연, 안순호, 이향목, 한국특허0373204 (2003)
  45. Y. G. Lee, K. S. Ryu, and S. H. Chang, ETRI J., 26, 285 (2004) https://doi.org/10.4218/etrij.04.0103.0153
  46. Y. G. Lee, K. M. Kim, Y. J. Park, Y. S. Hong, X. Wu, and K. S. Ryu, Synthetic Metals, 152, 89 (2005) https://doi.org/10.1016/j.synthmet.2005.07.168
  47. Y. G. Lee, K. Kyhm, N. S. Choi, and K. S. Ryu, J. Power Sources, 163, 264 (2006) https://doi.org/10.1016/j.jpowsour.2006.05.008
  48. S. Augustin, V. Hennige, G. Hoerpel, C. Hying, Desalination 146, 23 (2002) https://doi.org/10.1016/S0011-9164(02)00465-4
  49. T. Takemura, S. Aihara, K. Hamano, M. Kise, T. Nishimura, H. Urishibata, and H. Yoshiyasu, J Power Sources 146 (2005) 779 https://doi.org/10.1016/j.jpowsour.2005.03.159

Cited by

  1. Influence of Heat Treatment on Separators for Lithium Secondary Batteries vol.36, pp.1, 2012, https://doi.org/10.7317/pk.2012.36.1.093