DOI QR코드

DOI QR Code

Characterization of Ti(C,N) Solid Solutions in Densified Ti(C,N) and TiC-TiN-Ni Cermet

치밀화된 Ti(C,N)과 TiC-TiN-Ni 써멧에서의 Ti(C,N) 고용상의 특성평가

  • Kim, Seong-Won (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Chae, Jung-Min (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kang, Shin-Hoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Ryu, Sung-Soo (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology)
  • Published : 2008.12.28

Abstract

Ti(C,N) solid solutions in hot-pressed Ti($C_{x}N_{1-x}$) (x=0.0, 0.3, 0.5, 0.7, 1.0) and 40TiC-40TiN-20Ni (in wt.%) cermet were characterized in this study. For hot-pressed Ti(C,N)s, the lattice parameters and hardness values of Ti(C,N) were determined by using XRD (X-Ray Diffraction) and nanoindentation. The properties of hot-pressed Ti(C,N) samples changed linearly with their carbon or nitrogen contents. For the TiC-TiN-Ni cermet, the hardness of the hard phase and binder phase were determined by nanoindentation in conjunction with microstructural observation. The measured hardness values were ${\sim}8.7$ GPa for the binder phase and ${\sim}28.7$ GPa for the hard phase, which was close to the hardness of hot-pressed Ti($C_{0.7}N_{0.3}$).

Keywords

References

  1. S. Y. Zhang: Mater. Sci. & Eng. A, 163 (1993) 141 https://doi.org/10.1016/0921-5093(93)90588-6
  2. P. Ettmayer, H. Kolaska, W. Lengauer and K. Dreyer: Int. J. Ref. Met. & Hard Mater., 13 (1995) 343 https://doi.org/10.1016/0263-4368(95)00027-G
  3. G. E. D'Errico, S. Bugliosi and E. Guglielmi: J. Mater. Proc. Tech., 77 (1998) 337 https://doi.org/10.1016/S0924-0136(97)00437-8
  4. F. Qi and S. Kang: Mater. Sci. & Eng. A, 251 (1998) 276 https://doi.org/10.1016/S0921-5093(98)00609-1
  5. S. Y. Ahn, S. W. Kim and S. Kang: J. Am. Ceram. Soc., 84 (2001) 843 https://doi.org/10.1111/j.1151-2916.2001.tb00750.x
  6. J. Y. Ko, S.-Y. Park, D. Y. Yoon and S.-J. L. Kang: J. Am. Ceram. Soc., 87 (2004) 2262 https://doi.org/10.1111/j.1151-2916.2004.tb07502.x
  7. H. Pastor: Mater. Sci. & Eng. A, 106 (1988) 401 https://doi.org/10.1016/0025-5416(88)90724-0
  8. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne and G. Groboth: J. Alloys & Comp., 217 (1995) 137 https://doi.org/10.1016/0925-8388(94)01315-9
  9. S. Kang: Powder Metall., 40 (1997) 139 https://doi.org/10.1179/pom.1997.40.2.139
  10. D. Bandyopadhyay, R. C. Sharma and N. Chakraborti: J. Phase Equil., 21 (2000) 192 https://doi.org/10.1361/105497100770340264
  11. D. W. Lee, S. V. Alexandrovskii and B. K. Kim: Mater. Lett., 58 (2004) 1471 https://doi.org/10.1016/j.matlet.2003.10.011
  12. C. S. Yoon, S. Kang and D.-Y. Kim: Kor. J. Ceram., 3 (1997) 124
  13. M. G. Gee, R. Roebuck, P. Lindahl and H-O Andren: Mater. Sci. & Eng. A, 253 (1996) 128 https://doi.org/10.1016/0921-5093(95)10099-7
  14. S. Guicciardi, L. Silvestroni, G. Pezzotti and D. Sciti: Adv. Eng. Mater., 9 (2007) 389 https://doi.org/10.1002/adem.200600202
  15. X. Shi, H. Yang, G. Shao, X. Duan and Z. Xiong: Mater. Char., 59 (2008) 374 https://doi.org/10.1016/j.matchar.2007.02.004
  16. G. M. Pharr and W. C. Oliver: MRS Bull., 17 (1992) 28 https://doi.org/10.1557/S0883769400041634
  17. J. B. Nelson and D. P. Riley: Proc. Phys. Soc., 57 (1945) 160 https://doi.org/10.1088/0959-5309/57/3/302
  18. S. Kim: PhD thesis, Seoul Nat'l Univ. (2006)
  19. B. Bhushan (Ed.): Springer Handbook of Nanotechnology, B. Bhushan (Ed.), 1st Ed., Springer, Berlin Heidelberg New York (2004) 690
  20. L. E. Toth: Transition Metal Carbides and Nitrides, Academic Press, New York (1971) 6