DOI QR코드

DOI QR Code

Measurement of Hardness of Constituent Phases in Ti(C0.7N0.3)-NbC-Ni Cermets Using Nanoindentation

나노인덴테이션을 이용한 Ti(C0.7N0.3)-NbC-Ni 써멧 구성상의 경도평가

  • Kim, Seong-Won (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae-Min (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kang, Shin-Hoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Ryu, Sung-Soo (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Advanced Engineering Ceramics Department, Korea Institute of Ceramic Engineering and Technology)
  • Published : 2008.12.28

Abstract

The indentation technique has been one of the most commonly used techniques for the measurement of the mechanical properties of materials due to its experimental ease and speed. Recently, the scope of indentation has been enlarged down to the nanometer range through the development of instrumentations capable of continuously measuring load and displacement. In addition to testing hardness, the elastic modulus of submicron area could be measured from an indentation load-displacement (P-h) curve. In this study, the hardness values of the constituent phases in Ti($C_{0.7}N_{0.3}$)-NbC-Ni cermets were evaluated by nanoindentation. SEM observation of the indented surface was indispensable in order to separate the hardness of each constituent phase since the Ti($C_{0.7}N_{0.3}$)-based cermets have relatively inhomogeneous microstructure. The measured values of hardness using nanoindentation were ${\sim}20$ GPa for hard phase and ${\sim}10$ GPa for binder phase. The effect of NbC addition on hardness was not obvious in this work.

Keywords

References

  1. S. Y. Zhang: Mater. Sci. & Eng. A, 163 (1993) 141 https://doi.org/10.1016/0921-5093(93)90588-6
  2. P. Ettmayer, H. Kolaska, W. Lengauer and K. Dreyer: Int. J. Ref. Met. & Hard Mater., 13 (1995) 343 https://doi.org/10.1016/0263-4368(95)00027-G
  3. G. E. D'Errico, S. Bugliosi, and E. Guglielmi: J. Mater. Proc. Tech., 77 (1998) 337 https://doi.org/10.1016/S0924-0136(97)00437-8
  4. E. Rudy: J. Less Com. Met., 33 (1973) 245 https://doi.org/10.1016/0022-5088(73)90044-1
  5. D. Moskowitz and M. Humenik Jr.: Modern Dev. Pow. Met., 3 (1966) 83
  6. H. Suzuki, K. Hayashi, and O. Terada: J. Jap. Inst. Met., 35 (1981) 245
  7. L. E. Toth: Transition Metal Carbides and Nitrides, Academic Press, New York (1971) 6
  8. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, and G. Groboth: J. Alloys & Comp., 217 (1995) 137 https://doi.org/10.1016/0925-8388(94)01315-9
  9. M. F. Doerner and W. D. Nix: J. Mater. Res., 1 (1986) 601 https://doi.org/10.1557/JMR.1986.0601
  10. G. M. Pharr and W. C. Oliver: MRS Bull., 17 (1992) 28 https://doi.org/10.1557/S0883769400041634
  11. W. C. Oliver and G. M. Pharr: J. Mater. Res., 7 (1992) 1564 https://doi.org/10.1557/JMR.1992.1564
  12. G. M. Pharr: Mater. Sci. & Eng. A, 253 (1998) 151 https://doi.org/10.1016/S0921-5093(98)00724-2
  13. M. G. Gee, R. Roebuck, P. Lindahl and H-O Andren: Mater. Sci. & Eng. A, 253 (1996) 128 https://doi.org/10.1016/0921-5093(95)10099-7
  14. S. Guicciardi, L. Silvestroni, G. Pezzotti, and D. Sciti: Adv. Eng. Mater., 9 (2007) 389 https://doi.org/10.1002/adem.200600202
  15. X. Shi, H. Yang, G. Shao, X. Duan, and Z. Xiong: Mater. Char., 59 (2008) 374 https://doi.org/10.1016/j.matchar.2007.02.004
  16. F. Qi and S. Kang: Mater. Sci. & Eng. A, 251 (1998) 276 https://doi.org/10.1016/S0921-5093(98)00609-1
  17. S. Y. Ahn, S. W. Kim, and S. Kang: J. Am. Ceram. Soc., 84 (2001) 843 https://doi.org/10.1111/j.1151-2916.2001.tb00750.x
  18. S. Kim, S. Kang, and J.-M. Zuo, J. Am. Ceram. Soc., submitted
  19. A. Grosjeana, M. Rezrazia,U, J. Takadoumb, and P. Bercot: Surface and Coatings Technology 137 (2001) 92 https://doi.org/10.1016/S0257-8972(00)01088-4