The Transformation of Saponin Platycodi Radix by Aspergillus niger and Anti-oxidation Evaluation of the Transformed Metabolites

Aspergillus niger 효소에 의한 길경 사포닌(플라티코딘)의 전환 및 항산화 활성 비교

  • Kang, Ju-Hui (Department of food Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Gnu-Uk (Department of food Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Wui, Hye-Jung (Department of food Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Hwang, In-Kyeung (Department of food Nutrition, Research Institute of Human Ecology, Seoul National University)
  • 강주희 (서울대학교 식품영양학과) ;
  • 지근억 (서울대학교 식품영양학과) ;
  • 위혜정 (서울대학교 식품영양학과) ;
  • 황인경 (서울대학교 식품영양학과)
  • Published : 2008.12.31

Abstract

The principal objective of this study was to assess the possibility of transforming platycodin glycosides using various strains of probiotic bateria and edible fungi. Among the experimental microorganisms assess herein, Aspergillus niger KCTC 6909 evidenced the highest level of platycodin glycoside hydrolysis during fermentation. Particularly in cases in which the organism was incubated in the presence of rhamnose and platycodins. In order to produce the enzyme from Aspergillus niger effectively, various incubation conditions were assessd in order to determine the optimal conditions. The cytotoxicity on V79-4 (Chinese- hamster lung fibroblasts, normal cells) of platycodin was reduced significantly after conversion (concentration on $500{\mu}g/mL$, $1000{\mu}g/mL$); DPPH radical scavenging activity before conversion was 35.05%, and was 57.44% afterward. We noted significantly higher conversion activity inhibiting oxidative degradation. In conclusion, these results indicate that the proper combination of food microorganisms -and fermentation conditions can result in an increase in the glycoside hydrolysis of platycodin the resultant products of which reduce cytotoxicity- and increase anti-oxidant activity.

본 연구에서는 길경을 추출, 농축, 정제하여 crude platycodin을 얻은 후, 식품 미생물을 이용하여 길경의 배당체인 platycodin의 당 사슬 부분을 일부 가수분해하여 전환할 수 있는 방법을 모색하였다. 그리고 platycodin의 전환 전과 전환 후의 세포주를 이용한 세포 독성, 항산화 활성 및 항산화 효소 활성에 대해 비교하여 보았다. Chinese Hamster lung fibroblast인 V79-4 세포 독성실험 결과, 전환 전에 비교하여 전환 후에 더 나은 세포 생존률을 보였다. 후에 진행된 DPPH 자유기 소거능을 측정실험과 lipid peroxidation 억제능을 알아보기 위하여 malondialdehyde(MDA) 양을 측정한 결과 전환 후에서 더 높은 항산화 활성이 나타나는 결과를 보였다. 따라서, 식품이나 생약 소재 배당체의 구조를 식품 미생물을 통해 안전하게 전환시키면 그에 따라 독성, 활성 등이 변화해 새로운 성질을 가진 유도체를 만들어 낼 수 있고, 이러한 전환체는 상대적으로 높은 생리활성을 가지는 것을 알 수 있었다. 따라서 이상의 결과를 종합하여 보면, 식품이나 생약 소재 배당체의 구조를 식품 미생물을 통해 안전하게 비당체로 전환시키면 그에 따라 독성, 활성 등이 변화해 새로운 성질을 가진 유도체를 만들어 낼 수 있다. 본 연구에서 살펴본 platycodin의 전환 전과 전환 후의 항산화 생리활성은 대부분이 전환 후의 platycodin 활성이 높게 나타났으며, 이는 전환체가 새로운 식품 소재로서의 가능성을 시사한다고 판단된다.

Keywords

References

  1. 위혜정. 2005. 아스퍼질러스 나이거의 효소에 의한 길경 사포닌 (플라티코딘)의 전환 및 전환체의 특성연구. 석사학위논문. 서울대학교. pp 32-57
  2. 이은방. 1974. 길경의 약리학적 연구. 생약학회지. 5(1):49
  3. Akao T, Kobashi K. 1998. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration measurement of compound K by immunoassay. Biol Pharm Bull 21(3):245-249 https://doi.org/10.1248/bpb.21.245
  4. Ames BN. 1998. Micronutrients prevent cancer and delay aging. Toxicology Letters 102(1):5-18 https://doi.org/10.1016/S0378-4274(98)00269-0
  5. Blois MS. 1958. Antioxidant determination by the use of a stable free radicals. Nature 181:1199-1201 https://doi.org/10.1038/1811199a0
  6. Chung HY, Kim HB. 2000. In vitro Studies on the superoxide scavening activities, the cytotoxic and the immunomodulating effects of thirteen kinds of herbal extracts. Korean J Food Sci Technol 32(3):699-705
  7. Dupin I, Ziya G, Jean C S, Claude B, Oubadjim. M, Claude T. 1992. Production of $\beta$-apiosedase by Asperillus niger : Partial purification, properties, and effect on terpenyl apisyglucosides from grape. J Agric Food Chem 40(10):1886-1891 https://doi.org/10.1021/jf00022a032
  8. Halliwell B, Gutteride JMC. 1992. Free radical, antioxidants and human disease : where are we now?. J Labora Clini Med 119(3):598-620
  9. Halliwell B. 1996. Andioxidants in human health and disease. Annual Review of nutrition 16:33-50 https://doi.org/10.1146/annurev.nu.16.070196.000341
  10. Izumi T, Mariusz K P, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in Humans. J Nutr 130:1695-1699 https://doi.org/10.1093/jn/130.7.1695
  11. Nara E, Hayashi H, Kotake M, Miyashita K, Nagao, 2001. Acyclic carotenoids and their oxidation mixtures inhibit the growth of HL-60 human promelocytic cells. Nutrition and cancer 39:273-283 https://doi.org/10.1207/S15327914nc392_18
  12. Kang KA, Lee KH, Chae SW, Zhang R, Jung MS, Lee YK, Kim SY, Kim HS, Joo HG, Park JW, Ham YM, Lee NH, Hyun JW. 2005. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS letters 579(12):6295-6304 https://doi.org/10.1016/j.febslet.2005.10.008
  13. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. 1991. Studies on absorption, distribution, excretion and metabolism of metabolism of ginseng saponins VII. Comparison of the decomposition modes of ginsenoside- Rb 1 and -Rb 2in the digestive tract of rats. Chem Pharm Bull 39(9):2357-2361 https://doi.org/10.1248/cpb.39.2357
  14. Kim EY, Baik IH, Kim JH, Kim SR, Rhyu MR. 2004. Screening of the antioxidants activityof some medicinal plant. Korean J Food Sci Technol 36(2):333-338
  15. Lee EB. 1975. Pharmacological activities of crude platycodin: Terpenoid Symposium proceedings Natural Products Research Institute Seoul. Seoul National University. pp 52-64
  16. Ohkawa H, Ohishi N, Yagi K. 1997. Assay for lipid peroxide in animal tissues by hiobarbituric acid reaction. Anal Biochem 95(2):351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  17. Pryor WA , Stone K, Zang LY, Bermudez E. 1998. Fractionation of aqueous cigarette tar radical cause DNA damage. Chemical Rasearch in Toxiciligy 11(3):441-448 https://doi.org/10.1021/tx970159y
  18. Xu X, Harris K, Wang HJ, Murphy PA, Hendrich S. 1995. Bioavailabiility of soybean isoflavones depends upon gut microflorain women. J Nutr 125(9):2307-2315 https://doi.org/10.1093/jn/125.9.2307