DOI QR코드

DOI QR Code

Antioxidative Effects of Skinned Mugwort (Artemisia vulgaris L.) Extracts on UV-Irradiated Hairless Mouse Skin

자외선 조사 무모쥐 피부에 도포한 애엽(Mugwort) 추출물의 항산화 효과

  • Park, Si-Hyang (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Cho, Duck-Moon (Dept. of Food and Nutrition, Dongbusan College) ;
  • Choi, Byeong-Dae (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Yeung-Joon (Division of Marine Life Science/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Jin-Ho (Division of Food Science and Biotechnology, Pukyong National University)
  • 박시향 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 조득문 (동부산대학 식품영양과) ;
  • 최병대 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 최영준 (경상대학교 해양과학대학 해양생명과학부/해양산업연구소) ;
  • 최진호 (부경대학교 식품생명공학부)
  • Published : 2008.01.31

Abstract

This study investigated the antioxidative effect of mugwort (Artemisia vulgaris L.) extracts in hairless mouse skin from oxidative stress induced by UV-irradiation. After topical application on hairless mouse back with basic skin lotion group (control), ascorbic acid group (AA-0.5%, AA-1.0%, AA-2.0%, and AA-5.0%), and mugwort extract group (ME-0.5%, ME-1.0%, ME-2.0%, and ME-5.0%), the animals were irradiated to increasing doses of UVB (60 $mJ{\sim}100$ mJ) for 4 weeks. Hydrogen peroxide of hairless mouse skin homogenate significantly decreased in 2% (p<0.05) and 5% (p<0.05) of ME and AA groups. Hydroxyl radicals were decreased significantly in both of 2% and 5% ME groups as compared to AA groups (p<0.05). Oxidative stress levels deduced by oxidized protein contents were greatly decreased ($14.6{\sim}18.5%$) in all ME treatment groups, while only at 2% of AA treatment group. Lipid peroxide contents were greatly inhibited in all ME and AA treatment groups (p<0.01). Application of ME significantly increased catalase activity, over 25% in all mugwort and AA groups. Glutathione peroxidase activities were increased up to $20.5%{\sim}32.8%$ in 2.0% and 5% ME groups, whereas it increased in all AA groups. These results suggested that mugwort extract was more effective than that of ascorbic acid in protecting hairless mouse skin from photo-irradiation, and can be used as an potential anti-aging cosmetic ingredients.

무모쥐의 피부에 도포한 애엽 추출물과 positive 비교군인 아스코르브산이 피부 조직에 미치는 항산화효과를 조사하였다. 활성산소인 과산화수소의 생성량은 애엽 추출물과 아스코르브산 2%와 5% 도포군에서 유의적으로 감소하였다. 히드록시 라디칼의 생성량은 애엽 추출물 2%와 5% 도포군에서만 유의적인 감소효과가 있었다. 산화적 스트레스의 지표인 산화 단백질의 함량은 모든 애엽 추출물 도포군에서 대조군에 비해 유의적으로 감소($14.6%{\sim}18.5%$)하였으나, 아스코르브산의 경우는 2% 도포군에서만 저해효과가 인지되었다. 과산화지질 생성량은 대조군에 비해 애엽 추출물과 아스코르브산 도포그룹 모두에서 크게 감소하였다. 항산화효소인 카탈라아제의 활성은 애엽 추출물과 아스코르브산 모든 그룹에서 첨가 농도가 증가함에 따라 크게 증가하였으며, 글루타치온 퍼옥시다아제의 활성은 애엽 추출물 도포군은 2%와 5%에서, 아스코르브산의 경우는 모든 그룹에서 유의적인 활성 증가를 보였다. 이상의 결과는 피부 노화 억제기능성 화장품 소재로서 애엽 추출물의 활용 가능성을 제시한다.

Keywords

References

  1. Cha SH, Jung YD, Lee SC, Ahn BW, Kim TP, Lee MW.1991. Oxidation of skin tissue proteins by ultraviolet-Β irradiation. Korean J Gerontol 1: 82-86
  2. Black H. 1987. Potential involvement of free radical reactions in ultraviolet light-mediated cutaneous damage. J Photochem Photobiol 46: 213-221 https://doi.org/10.1111/j.1751-1097.1987.tb04759.x
  3. Witt EH, Motchnik P, Packer L. 1993. Evidence for UV light as an oxidative stressor in skin. In Oxidative Stress in Dermatology. Marcel Decker, New York. p29-47
  4. Elaine S, Frederick AC, James AM, Lorraine HK. 1991. Topical all-trans retinoic acid stimulates collagen synthesis in vivo. J Invest Dermatol 96: 975-978 https://doi.org/10.1111/1523-1747.ep12476385
  5. Simon C, Ilona K, Tramposch KM. 1992. Effects of all-trans retinoic acid on UVB-irradiated and non-irradiated hairless mouse skin. J Invest Dermatol 98: 248-260 https://doi.org/10.1111/1523-1747.ep12556066
  6. Francesco B, Maria L, Lucia M, Claudio P, Antonio T, Domenico T, Francesco C, Antonella S. 1996. Flavonoids as potential protective agents against photo-oxidative skin damage. Int J Pharm 145: 87-94 https://doi.org/10.1016/S0378-5173(96)04728-X
  7. Fuchs J, Stefan W, Maurizio P, Norber G, Thomas H, Lester P, Roland K. 2003. HPLC analysis of vitamin E isoforms in human epidermis: Correlation with minimal erythema dose and free radical scavenging activity. Free Radic Biol Med 34: 330-336 https://doi.org/10.1016/S0891-5849(02)01293-5
  8. Ahn BY. 1992. Antimicrobial activity of the essential oils of Artemisia princeps var. orientalis. Korean J Food Hygiene 7: 157-160
  9. Park SK, Park JC. 1994. Antimicrobial activity of extracts and coumaric acid isolated from Artemisia princeps var. orientalis. Korean J Biotech Bioengineer 9: 506-511
  10. Oh TY, Ahn BO, Ko JI, Ryu BK, Son MW, Kim SH, Kim WB, Lee EB. 1997. Studies on protective effect of DA-9601, an Artemisiae herba extract, against ethanol-induced gastric mucosal damage and its mechanism. J Appl Pharmacol 5: 202-210
  11. Kim NJ. 2005. Screening effect of natural materials for development of functional cosmetic. MS Thesis. Pukyong National University, Busan
  12. Hahn DR, Kim IH. 1973. Studies on the volatile oil constituents in Artemisia sp. isolation and determination of camphor by gas chromatography. J Pharmacol 4: 71-74
  13. Ryu SN, Kang SS, Kim JS, Ku BI. 2004. Quantitative analysis of eupatilin and jaceosidin in Artemisia herba. Korean J Crop Sci 49: 452-456
  14. Kim BN, Lee KS, Song BK. 2000. A study on the hemostatic effects of Artemisiae asiaticae herba aqua-acupuncture and gelatin aqua-acupuncture. J Oriental Gynecol 13: 46-59
  15. Choi BB, Lee HJ, Bang SK. 2004. Studies on the amino acid, sugar analysis and antioxidative effect of extracts from Artemisia sp. Korean J Food Nutr 17: 86-91
  16. Kim YP, Lee SC. 1987. Superoxide dismutase activities in the human skin. In The Biological Role of Reactive Oxygen Species in Skin. University of Tokyo Press, Tokyo. p225-320
  17. Lowry OH, Roseborough NJ, Farr LA, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275
  18. McCord JM, Fridovch I. 1969. Superoxide dismutase; An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055
  19. Chan PC, Bielski BH. 1974. Enzyme-catalyzed free radical reactions with nicotiamide adenine nucleotides. J Biol Chem 249: 1317-1319
  20. Thurman RG, Ley HG, Scolz R. 1987. Hepatic microsomal ethanol oxidation. Eur J Biochem 25: 420-430 https://doi.org/10.1111/j.1432-1033.1972.tb01711.x
  21. Halliwell B, Gutteridge JM. 1981. Formation of a thiobarbituric acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128: 347-352 https://doi.org/10.1016/0014-5793(81)80114-7
  22. Levine RL, Garland CN, Oliver AA, Climent AG, Lenz BA. 1990. Determination of carbonyl content in oxidatively modified proteins. In Methods in Enzymology. Academic Press, New York. Vol 186, p464-478
  23. Choi JH, Yu BP. 1990. Unsuitability of TBA test as a lipid peroxidation marker due to prostaglandin synthesis in the aging kidney. AGE 13: 61-64 https://doi.org/10.1007/BF02432391
  24. Rigo A, Rotilio G. 1977. Simultaneous determination of superoxide dismutase and catalase in biological materials by polarography. Anal Biochem 81: 157-166 https://doi.org/10.1016/0003-2697(77)90609-1
  25. Tappel AL. 1978. Glutathione peroxidase and hydroperoxides. In Methods in Enzymology. Academic Press, New York. Vol 56, p506-513
  26. Yamamoto Y. 2001. Role of active oxygen species and antioxidants in photoaging. J Dermatol Sci 27: 1-4 https://doi.org/10.1016/S0923-1811(01)00120-7
  27. Yasui H, Sakurai H. 2000. Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem Biophys Res Commun 269: 131-136 https://doi.org/10.1006/bbrc.2000.2254
  28. Kari P, Krsi L, Pekka A, Urpo K, Parkku A. 1995. Chronic UVB irradiation induces superoxide dismutase activity in human epidermis in vivo. J Photochem Photobiol B 3: 43-48 https://doi.org/10.1016/1011-1344(95)07131-K
  29. Podda M, Maret GT, Christine W, Yan LJ, Packer L. 1997. UV-irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic Biol Med 24: 55-65 https://doi.org/10.1016/S0891-5849(97)00142-1
  30. Fuchs J, Margaret EH, Laurie MR, David S, Wilson C.C, Lester P. 1989. Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. J Invest Dermatol 93: 769-773 https://doi.org/10.1111/1523-1747.ep12284412
  31. Punnonen K, Christer T, Jansen AP, Marku A. 1991. Effect of in vitro UVA irradiation and PUVA treatment on membrane fatty acids and activities of antioxidant enzymes in human keratinocytes. J Invest Dermatol 4: 255-259 https://doi.org/10.1111/1523-1747.ep12462271
  32. Han YT, Han ZW, Yu GY, Wang YJ, Cui RY, Wang CB. 2004. Inhibitory effect of polypeptide from Chlamys farreri on ultraviolet A-induced oxidative damage on human skin fibroblast MMEs in vitro. Pharmacol Res 49: 265-274 https://doi.org/10.1016/j.phrs.2003.09.009

Cited by

  1. Antiwrinkle Effects of Mugwort (Artemisia vulgaris) Extracts on UVB-Irradiated Hairless Mouse Skin vol.37, pp.9, 2008, https://doi.org/10.3746/jkfn.2008.37.9.1136
  2. 국내 한방 패치 특허 현황에 대한 분석연구 vol.22, pp.1, 2018, https://doi.org/10.25153/spkom.2018.22.1.004
  3. Protective Effects of Kuding Tea ( Ilex kudingcha C. J. Tseng ) Polyphenols on UVB-Induced Skin Aging in SKH1 Hairless Mice vol.24, pp.6, 2019, https://doi.org/10.3390/molecules24061016