Abstract
Whether rating curves are used in practice or new ones are derived, the characteristics of regression analysis are often neglected. For example, a discharge rating curve, which is established from a regression of observed water levels (H) on observed flowrates(Q), is sometimes used for estimating a design water level corresponding to a simulated design flood runoff. However, if independent and dependent variables are changed with each other, the regression equation is changed in existing regression analysis, which is derived from vertical errors between observed data and regression line. Thus, regression equations should not be applied inversely. To avoid this problem, A new two-way variable least-squares regression analysis is proposed. The new method was applied to the rating curves of five water level stations on main stream of Nakdong River. The three kinds of regression models, which are respectively regression of Q versus H (model 1), H versus Q (model 2) and two-way (model 3), showed that the new method can reduce inadvertent mistakes when applied in practice.
수위-유량관계식의 유도와 실무적용에 있어 통상적으로 회귀분석의 특성을 간과하고 사용하는 경우가 종종 발생한다. 예를 들어 실무에서는 관측수위로부터 관측유량으로 회귀분석되어 만들어진 수위-유량관계식을 홍수모형으로부터 모의된 설계홍수유출량으로부터 설계홍수위를 환산하는데 사용되기도 한다. 그러나 독립과 종속변수가 서로 바뀌면, 관측치와 회귀식간 연직거리의 잔차들로부터 유도된 기존의 회귀분석에 의하여, 회귀식이 서로 달라지기 때문에 역으로 적용하여서는 안 된다. 본 연구에서는 이런 문제점을 해결하기위해 회귀식의 변수들을 상호 교환할 수 있는 최소자승 회귀분석의 새로운 알고리즘을 제안하였다. 새로운 방법을 낙동강유역의 본류 5개 수위표지점의 수위-유량관계식에 대하여 적용하였다. 3가지 회귀식이 유도되었는데, 이들은 각각 수위로부터 유량으로(model 1), 유량으로부터 수위로(model 2) 그리고 양방향(model 3)으로 유도된 수위-유량관계식을 비교하여 실무에서 잘못 적용되는 실수를 줄일 수 있는 새로운 방법을 제시하였다.