DOI QR코드

DOI QR Code

Evaluation of Maternal Toxicity in Rats Exposed to 1,3-Dichloro-2-propanol during Pregnancy

  • Lee, Jong-Chan (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Shin, In-Sik (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Gang-Hyeon (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Park, Na-Hyeong (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Moon, Chang-Jong (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Bae, Chun-Sik (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Kang, Sung-Soo (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Sung-Ho (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Shin, Dong-Ho (Animal Medical Center, College of Veterinary Medicine, Chonnam National University) ;
  • Kim, Jong-Choon (Animal Medical Center, College of Veterinary Medicine, Chonnam National University)
  • Published : 2008.12.01

Abstract

The present study was carried out to investigate the potential adverse effects of 1,3-dichloro-2-propanol on pregnant dams after maternal exposure during the gestational days (GD) 6 through 19 in Sprague-Dawley rats. The tested chemical was administered orally to pregnant rats at dose levels of 0, 10, 30, or 90 mg/kg/day. During the test period, clinical signs, mortality, body weights, food consumption, serum biochemistry, gross findings, organ weights, and Caesarean section findings were examined. In the 90 mg/kg group, decreases in the body weight gain and food consumption, and increases in the weights of liver and adrenal glands were observed. Serum biochemical investigations revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol (CHO), triglyceride (TG), alkaline phosphatase (ALP), and bilirubin (BIL) and decreases in glucose (GLU), albumin (ALB) and total protein (TP). In the 30 mg/kg group, a decrease in the food consumption and an increase in the liver weight were observed. Serum biochemical investigation also showed increases in CHO and TG and a decrease in glucose. Since there were no signs of maternal toxicity in the 10 mg/kg group, it is considered to be the no-observed-adverse-effect level (NOAEL) of 1,3-dichloro-2-propanol. It is concluded that successive oral administration of 1,3-dichloro- 2-propanol to pregnant rats for 14 days may cause significant toxicities in body weight and liver at a dose rate ${\geq}$ 30 mg/kg/day.

Keywords

References

  1. Andersen, H., Larsen, S., Spliid, H. and Christensen, N.D. (1999). Multivariate statistical analysis of organ weights in toxicity studies. Toxicology, 136, 67-77 https://doi.org/10.1016/S0300-483X(99)00056-6
  2. BIBRA International Ltd. (1999). Toxicity profile 1,3-dichloro-2- propanol. Cited by COM (2001)
  3. Eder, E. and Weinfurtner, E. (1994). Mutagenic and carcinogenic risk of oxygen containing chlorinated C-3 hydrocarbons: putative secondary products of C-3 chlorohydrocarbons and chlorination of water. Chemosphere, 29, 2455-2466 https://doi.org/10.1016/0045-6535(94)90413-8
  4. Fry, J.R., Sinclair, D., Piper, C.H., Townsend, S.L. and Thomas, N.W. (1999). Depression of glutathione content, elevation of CYP2E1-dependent activation, and the principal determinant of the fasting-mediated enhancement of 1,3- dichloro-2-propanol hepatotoxicity in the rat. Food Chem. Toxicol., 37, 351-355 https://doi.org/10.1016/S0278-6915(99)00012-5
  5. Garle, M.J., Sinclair, C., Thurley, P. and Fry, J.R. (1999). Haloalcohols deplete glutathione when incubated with fortified liver fractions. Xenobiotica, 29, 533-545 https://doi.org/10.1080/004982599238524
  6. Hahn, H., Eder, E. and Deininger, C. (1991). Genotoxicity of 1,3-dichloro-2-propanol in the SOS chromotest and in the Ames test. Elucidation of the genotoxic mechanism. Chem.-Biol. Interact., 80, 73-88 https://doi.org/10.1016/0009-2797(91)90032-3
  7. Hammond, A.H. and Fry, J.R. (1999). Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers. Chem.-Biol. Interact., 122, 107-115 https://doi.org/10.1016/S0009-2797(99)00118-0
  8. Hammond, A.H., Garle, M.J. and Fry, J.R. (1996). Toxicity of dichloropropanols in rat hepatocyte cultures. Environ. Toxicol. Pharmacol., 1, 39-43 https://doi.org/10.1016/1382-6689(95)00007-0
  9. Haratake, J., Furuta, A., Iwasa, T., Wakasugi C. and Imazu K. (1988). Submassive hepatic necrosis induced by dichloropropanol. Liver., 13, 123-129
  10. Hazardous Substances Data Bank (HSDB). (2002). 1,3- Dichloro-2-propanol. Available from the NISC Chemical Information System. Profile last updated on November 8, 2002
  11. Jersey, G.C., Breslin, W.J. and Zielke, G.J. (1991). Subchronic toxicity of 1,3-dichloro-2-propanol in the rat. Toxicologist, 11, 353
  12. Kang, B.H., Son, H.Y., Ha, C.S., Lee, H.S. and Song, S.W. (1995). Reference values of hematology and serum chemistry in Ktc: Sprague-Dawley rats. Kor. J. Lab. Anim. Sci., 11, 141-145
  13. Katoh, T., Haratake, J., Nakano, S., Kikuchi, M., Yoshikawa, M. and Arashidani, K. (1998). Dose-dependent effects of dichloropropanol on liver histology and lipid peroxidation in rats. Ind. Health, 36, 318-323 https://doi.org/10.2486/indhealth.36.318
  14. Kim, H.Y., Lee, S.B., Lim, K.T., Kim, M.K. and Kim, J.C. (2007). Subchronic inhalation toxicity study of 1,3-dichloro- 2-propanol in rats. Ann. Occup. Hyg., 51, 633-643 https://doi.org/10.1093/annhyg/mem041
  15. Kim, J.C., Shin, D.H., Kim, S.H. Kim, J.K., Park, S.C., Son, W.C., Lee, H.S., Suh, J.E., Kim, C.Y., Ha, C.S. and Chung, M.K. (2004). Subacute toxicity evaluation of a new camptothecin anticancer agent CKD-602 administered by intravenous injection to rats. Regul. Toxicol. Pharmacol., 40, 356-369 https://doi.org/10.1016/j.yrtph.2004.09.002
  16. Kruskal, W.H. and Wallis, W.A. (1952). Use of ranks in one criterion variance analysis. J. Am. Statist. Assoc., 47, 614- 617
  17. Kuroda, Y., Fueta, Y., Kohshi, K., Nakao, H., Imai, H. and Katoh, T. (2002). Toxicity of dichloropropanols. J. UOEH, 24, 271-280 https://doi.org/10.7888/juoeh.24.271
  18. Lesko, S.M. and Mitchell, A.A. (1997). Renal function after short-term ibuprofen use in infants and children. Pediatrics, 100, 954-957 https://doi.org/10.1542/peds.100.6.954
  19. Lym, C.J., Shin, D.H., Yum, Y.N., Oh, J.H., Kim, S.H., Hwang, M.S., Cho, D.H. and Yang, K.H. (2003). Toxicity study of 1,3- dichloro-2-propanol: 13 weeks oral toxicity test in the SD rat. H-35(0011). J. Vet. Pharmacol. Therap., 26, 295- 296
  20. Molander, D.W., Wroblewsk, F. and La, Due, J.S. (1955). Transaminase compared with cholinesterase and alkaline phosphatase an index of hepatocellular integrity. Clin. Res. Proc., 3, 20-24
  21. Nyman, P.J., Diachenko, G.W. and Perfetti, G.A. (2003). Survey of chloropropanols in soy sauces and related products. Food Addit. Contam., 20, 909-915 https://doi.org/10.1080/02652030310001603792
  22. Ohkubo, T., Hayashi, T., Watanabe, E., Endo, H., Goto, S., Mizoguchi, T. and Mori, Y. (1995). Mutagenicity of chlorohydrins. Nippon Suisan Gakkaishi, 61, 596-601 https://doi.org/10.2331/suisan.61.596
  23. Petterino, C. and Argentino-Storino, A. (2006). Clinical chemistry and haematology historical data in control Sprague- Dawley rats from pre-clinical toxicity studies. Exp. Toxicol. Pathol., 57, 213-219 https://doi.org/10.1016/j.etp.2005.10.002
  24. Piasecki, A., Ruge, A. and Marquardt, H. (1990). Malignant transformation of mouse M2-fibroblasts by glycerol chlorohydrins contained in protein hydrolysates and commercial food. Arzneimittel Forschung, 40, 1054-1055
  25. Registry of Toxic Effects of Chemical Substances (RTECS). (2000). 1,3-Dichloro-2-propanol: toxicity, carcinogenicity, tumorigenicity, mutagenicity, and teratogenicity. RTECS No. UB1400000. Profile last updated in July 2000
  26. Scheffe, H. (1953). A method of judging all contrasts in the analysis of variance. Biometika, 40, 87-104
  27. Shiozaki, T., Mizobata, Y., Sugimoto, H. Yoshioka, T. and Sugimoto, T. (1994) Fulminant hepatitis following exposure to dichlorohydrin report of two cases. Hum. Exp. Toxicol., 13, 267-270 https://doi.org/10.1177/096032719401300408
  28. Smyth, H.F., Carpenter, C.P., Weil, C.S., Pozzani, U.C. and Striegel, J.A. (1962). Range-finding toxicity data: List VI. Am. Ind. Hyg. Assoc. J., 23, 95-107 https://doi.org/10.1080/00028896209343211
  29. Wolford, S.T., Schroer, R.A., Gohs, F.X., Gallo, P.P., Brodeck, M., Falk, H.B. and Ruhren, R. (1986). Reference range laboratory animals. J. Toxicol. Environ. Health, 18, 161- 188 https://doi.org/10.1080/15287398609530859
  30. Zeiger, E., Anderson, B., Haworth, S., Lawlor, T. and Morthlmans, K. (1988). Salmonella mutagenicity test: IV. Results from the testing of 300 chemicals. Environ. Mol. Mutagen., 11, 1-158
  31. Zimmerman, H.J. and Seeff, L.B. (1970). Enzymes in hepatic disease. In: Coodley EL, editor. Diagnostic enzymology. Philadelphia, PA: Lea and Febiger. pp. 1-38