CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran (Department of Dentistry, School of Medicine, Ewha Womans University) ;
  • Lee, Hee-Su (Department of Oral Anatomy, School of Dentistry, Kangnung National University) ;
  • Kim, Hyeong-Seob (Department of Prosthodontics, School of Dentistry, Kyung-Hee University) ;
  • Baik, Jin (Department of Prosthodontics, School of Dentistry, Kyung-Hee University) ;
  • Woo, Yi-Hyung (Department of Prosthodontics, School of Dentistry, Kyung-Hee University)
  • Published : 2008.06.30

Abstract

STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Keywords

References

  1. Kasemo B, Lausmaa J. Biomaterial and implant surfaces: A surface science approach. Int J Oral Maxillofac Implants 1988;3:247-59
  2. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T, Br¨anemark PI. Osseointegration of titanium implants. Acta Orthop Scand 1986;57:285-9 https://doi.org/10.3109/17453678608994393
  3. Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 2002;60:529-40 https://doi.org/10.1002/jbm.10101
  4. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25;2867-75 https://doi.org/10.1016/j.biomaterials.2003.09.048
  5. Brunette DM. Effects of surface topography of implant materials on cell behavior in vitro and in vivo. In: Hoch HC, editor. Nanofabrication and biosystems. Cambridge, UK: Cambridge University Press; 1996
  6. Mustafa K, Silva Lopez B, Hultenby K, Wennerberg A, Arvidson K. Attachment and proliferation of human oral fibroblasts to titanium surfaces blasted with $TiO_2$ particles. A scanning electron microscopic and histomorphometric analysis. Clin Oral Impl Res 1998;9:195-207 https://doi.org/10.1034/j.1600-0501.1998.090307.x
  7. Yoshinari M, Matsuzaka K, Inoue T, Oda Y, Shimono M. Effects of multigrooved surfaces on fibroblasts behavior. J Biomed Mater Res 2003;65A:359-68 https://doi.org/10.1002/jbm.a.10521
  8. Anselme K, Linez P, Bigerelle M, Le Maguer D, Le Maguer A, Hardouin P, Hildebrand HF, Iost A, Leroy JM. The relative influence of the topography and chemistry of Ti Al6V4 surfaces on osteoblastic cell behavior. Biomater 2000;21:1567-77 https://doi.org/10.1016/S0142-9612(00)00042-9
  9. Bachle M, Butz F, Hubner U, Bakalinis E, Kohal RJ. Behavior of CAL72 osteoblast-like cells cultured on zirconia ceramics with different surface topographies. Clin Oral Impl Res 2007;18:53-9 https://doi.org/10.1111/j.1600-0501.2006.01292.x
  10. Heydecke G, Kohal R, Galser R. Optimal esthetics in single-tooth replacement with the Re-Implant system: A case report. Int J Prosthodont 1999;12:184-9
  11. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Biomaterials 1999;20:1-25 https://doi.org/10.1016/S0142-9612(98)00010-6
  12. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature 1975;258:703-4 https://doi.org/10.1038/258703a0
  13. Manicone PF, Iommetti PR, Raffaelli L. An overview of zirconia ceramics: Basic properties and clinical applications. J Dent 2007;35:819-26 https://doi.org/10.1016/j.jdent.2007.07.008
  14. Ichikawa Y, Akagawa Y, Nikai H, Tsuru H. Tissue compatiblity and stability of a new zirconia ceramic in vivo. J Prosthet Dent 1992;68:322-6 https://doi.org/10.1016/0022-3913(92)90338-B
  15. Josset Y, Oum'Hamed Z, Zarrinpour A, Lorenzato M, Adnet JJ, Laurent Maquin D. In vitro reactions of human osteoblasts in culture with zirconia and alumina ceramics. J Biomed Mater Res 1999;47:481-93 https://doi.org/10.1002/(SICI)1097-4636(19991215)47:4<481::AID-JBM4>3.0.CO;2-Y
  16. Scarano A, Piatelli M, Caputi S, Favero GA, Piatelli A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: and in vivo human study. J Periodontol 2004;75:292-6 https://doi.org/10.1902/jop.2004.75.2.292
  17. Rimondini L, Cerroni L, Carrassi A, Torricelli P. Bacterial colonization of zirconia ceramic surfaces: an invitro and in vivo study. Int J Oral Maxillofac Implants 2002;17:793-8
  18. Degidi M, Artese L, Scarano A, Perrotti V, Gehrke P, Piatelli A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J Periodontol 2006;77:73-80 https://doi.org/10.1902/jop.2006.77.1.73
  19. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina, Farina E, Piatelli A. Zirconium oxide: analysis of MG63 osteoblast-like cell response by means of microarray technology. Biomaterials 2004;25:215-28 https://doi.org/10.1016/S0142-9612(03)00486-1
  20. Lalor PA, Revell PA, Gray AB, Wright S, Railton GT, Freeman MA. Sensitivity to titanium. A cause of implant failure? The Journal of Bone and Joint Surgery. British volume 1991;73:25-8
  21. Yamauchi R, Morita A, Tsuji T. Pacemaker dermatitis from titanium. Contact Dermatitis 2000;42:52-3
  22. Albrektsson T, Hansson HA, Ivarsson B. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implant in initial bone healing. J Prosthet Dent 1993;69:599-604 https://doi.org/10.1016/0022-3913(93)90289-Z
  23. Akagawa Y, Ichikawa Y, Nikai H, Tsuru H. Interface histology of unloaded and early loaded partially stabilized zirconia endosseous implants in initial bone healing. J Prosthet Dent 1993;69:599-604 https://doi.org/10.1016/0022-3913(93)90289-Z
  24. Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between free-standing and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: A clinical and histologic study. J Prosthet Dent 1998;80:551-8 https://doi.org/10.1016/S0022-3913(98)70031-9
  25. Kohal RJ, Weng D, Bachle M, Strub J. Loaded custommade zirconia and titanium implants show similar osseointegration. J Periodontol 2004;75:1262-8 https://doi.org/10.1902/jop.2004.75.9.1262
  26. Kohal RJ, Hurzeler MB, Mota LF, Mota LF, Klaus G, Caffesse RG, Strub JR. Custom-made root analogue titanium implants placed into extraction sockets. An experimental study in monkeys. Clin Oral Implants Res 1997;8:386-92 https://doi.org/10.1034/j.1600-0501.1997.080505.x
  27. Sennerby L, Dasmah A, Larsson B, Iverhed M. Bone tissue responses to surface-modified zirconia implants: a histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005;7(suppl 1): s13-s20 https://doi.org/10.1111/j.1708-8208.2005.tb00070.x
  28. Ko HC, Han JS, Bachle M, Jang JH, Shin SW, Kim DJ. Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Dental Materials 2007;23:1349-55 https://doi.org/10.1016/j.dental.2006.11.023
  29. Weiss P. Experiments on cell and axon orientation in vitro, the role of colloidal exudates in tissue organization. J Exp Zool 1945;100:353-86 https://doi.org/10.1002/jez.1401000305
  30. Matsuzaka K, Walboomers XF, Yoshinari M, Inoue T, Jansen JA. The attachment and growth behavior of osteoblast- like cells on microtextured surfaces. Biomater 2003;24:2711-19 https://doi.org/10.1016/S0142-9612(03)00085-1
  31. Anselme K. Osteoblast adhesion on biomaterials. Biomater 2000;21:667-81 https://doi.org/10.1016/S0142-9612(99)00242-2
  32. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of $TiO_2$ blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Imp Res 2001;12:515-25 https://doi.org/10.1034/j.1600-0501.2001.120513.x
  33. Mustafa K, Oden A, Wennerberg A, Hultenby K, Arvidson K. The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomater 2005;26:373-81 https://doi.org/10.1016/j.biomaterials.2004.02.037
  34. Hormia M, Kononen M, Kivilahti J, Virtanen I. Immunolocalization of proteins specific for adherents junctions in human gingival epithelial cells grown on differently processed titanium surfaces. J Perio Res 1991;26:491-7 https://doi.org/10.1111/j.1600-0765.1991.tb01800.x
  35. Guy SC, McQuade MJ, Scheidt MJ, McPherson JC, Rossmann JA, Van Dyke TE. In vitro study of attachment of human gingival fibroblasts to endosseous implant materials. J Periodontol 1993;64:542-6 https://doi.org/10.1902/jop.1993.64.6.542
  36. Cochran DL, Simpson J, Weber HP, Buser D. Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofac Implants 1988;3:21-4
  37. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10
  38. Gotfredsen K, Nimb L, Hjorting-Hansen E, Jensen JS, Holmen A. Histomorphometric and removal torque analysis for $TiO_2$-blasted titanium implants. An experimental study on dogs. Clin Oral Imp Res 1992;2:77-84
  39. Ask M, Lausmaa J, Kasemo B. Preparation and surface spectroscopic characterization of oxide films on $Ti6Al_4V$. Appl Surf Sci 1988;35:283-301 https://doi.org/10.1016/0169-4332(89)90013-5
  40. Hunter A, Archer CW, Walker PS, Blunn GW. Attachments and proliferation of osteoblasts and fibroblasts on biomaterials for orthopedic use. Biomater 1995;16:287-95 https://doi.org/10.1016/0142-9612(95)93256-D
  41. Ismail M, Rohanizadeh R, Atwa S, Mason R, Ruys A, Martin P, Bendavid A. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. J Mater Sci Mater Med 2007; 18:705- 14 https://doi.org/10.1007/s10856-006-0012-2
  42. Marinucci L, Balloni S, Becchetti E, Belcastro S, Gurerra M, Calvitti M, Cinzia L, Calvi EM, Locci P. Effect of surface roughness on human osteoblast proliferation and gene expression in vitro. Int J Oral Maxillofac Implants 2006;21:719-25
  43. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford JJ, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Materi Res 1995;29:389-401 https://doi.org/10.1002/jbm.820290314
  44. Zitzmann NU, Abrahamsson I, Berglundh T, Lindhe J. Soft tissue reactions of plaque formation at implant abutments with different surface topography. An experimental study in dogs. J Clin Periodontol 2002;29:456-61 https://doi.org/10.1034/j.1600-051X.2002.290511.x
  45. Oliva J, Oliva X, Olive JD. One-year follow-up of first consecutive 100 zirconia dental implants in humans: a comparison of 2 different rough surfaces. Int J Oral Maxillofac Implants 2007;22:430-35
  46. Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F. Zirconium oxide coating improves implant osseointegration in vivo. Dental Materials 2007;17:(Epub ahead of print)
  47. Kohal RJ, Papavasiliou G, Kamposiora P, Tripodakis A, Strub JR. Three-dimensional computerized stress analysis of commercially pure titanium and yttriumpartially stabilized zirconia implants. Int J Prosthodont 2002;15:189-94
  48. Gahert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Imp Res 2007;18:662-8 https://doi.org/10.1111/j.1600-0501.2007.01401.x