DOI QR코드

DOI QR Code

Volatility Analysis for Multivariate Time Series via Dimension Reduction

차원축소를 통한 다변량 시계열의 변동성 분석 및 응용

  • Song, Eu-Gine (Department of Statistics, Sookmyung Women's University) ;
  • Choi, Moon-Sun (Department of Statistics, Sookmyung Women's University) ;
  • Hwang, S.Y. (Department of Statistics, Sookmyung Women's University)
  • 송유진 (숙명여자대학교 통계학과) ;
  • 최문선 (숙명여자대학교 통계학과) ;
  • 황선영 (숙명여자대학교 통계학과)
  • Published : 2008.11.30

Abstract

Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.

계량경제학 분야에서 널리 쓰이는 MGARCH(multivariate GARCH)모형은 여러개의 시계열자료들의 변동성을 함께 모형화한다. 그러나 변수가 많아질수록 추정해야 할 모수의 수가 급격하게 늘어나는 문제점이 있다. 본 연구에서는 인자 모형을 통해 자료의 차원을 축소시킴로써 이러한 문제를 해결하고자 하였다. 국내의 주가수익률 자료에 통계적 인자 모형과 fundamental factor model을 적용하여 각각의 의미 있는 인자들을 얻은 후 이를 MGARCH모형에 적합시켰다. 또한 두 인자모형을 바탕으로 얻어진 최종 모형들의 MSE, MAD와 VaR(Value at Risk)를 계산하여 예측력을 비교하고자 한다.

Keywords

References

  1. 성웅현 (2002). <응용 다변량분석>. 탐진
  2. Bauwens, L., Laurent, S. and Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey, Journal of Applied Econometrics, 21, 79-109 https://doi.org/10.1002/jae.842
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327 https://doi.org/10.1016/0304-4076(86)90063-1
  4. Bollerslev, T. (1990). Modeling the conditional in short-run nominal exchange rates: A multivariate generalized ARCH model, Review of Economics and Statistics, 72, 498-505 https://doi.org/10.2307/2109358
  5. Bollerslev, T., Engle, R. F. and Wooldridge, J. M. (1998). A capital-asset pricing model with time-varying covariances, Journal of Political Economy, 96, 116-131 https://doi.org/10.1086/261527
  6. Campbell, J. Y., Lo, A. W. and MacKinlay, A. C. (1997). The Econometrics of Financial Markets, Princeton University Press, Princeton, New Jersey
  7. Connor, G. (1995). The three types of factor models: A comparison of their explanatory power, Financial Analysts Journal, 51, 42-46
  8. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom Inflation, Econometrica, 50, 987-1007 https://doi.org/10.2307/1912773
  9. Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH, Econometric Theory, 11, 122-150 https://doi.org/10.1017/S0266466600009063
  10. Grinold, R. C. and Kahn, R. N. (2000). Active Portfolio Management: A Quantitative Approach for Producing Superior Returns and Controlling Risk, 2nd edition., McGraw-Hill, New York
  11. RiskMetrics (1996). RiskMetrics, Technical Document, 4th ed., J. P. Morgan, New York
  12. Tsay, R. S. (2005). Analysis of Financial Time Series, John Wiley & Sons, New York
  13. Zivot, E. and Wang, J. (2006). Modeling Financial Time Series with S-PLUS, 2nd ed., Springer, New York

Cited by

  1. Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.821
  2. A recent overview on financial and special time series models vol.29, pp.1, 2016, https://doi.org/10.5351/KJAS.2016.29.1.001