Abstract
Multivariate GARCH(MGARCH) has been useful in financial studies and econometrics for modeling volatilities and correlations between components of multivariate time series. An obvious drawback lies in that the number of parameters increases rapidly with the number of variables involved. This thesis tries to resolve the problem by using dimension reduction technique. We briefly review both factor models for dimension reduction and the MGARCH models including EWMA (Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model). We create meaningful portfolios obtained after reducing dimension through statistical factor models and fundamental factor models and in turn these portfolios are applied to MGARCH. In addition, we compare portfolios by assessing MSE, MAD(Mean absolute deviation) and VaR(Value at Risk). Various financial time series are analyzed for illustration.
계량경제학 분야에서 널리 쓰이는 MGARCH(multivariate GARCH)모형은 여러개의 시계열자료들의 변동성을 함께 모형화한다. 그러나 변수가 많아질수록 추정해야 할 모수의 수가 급격하게 늘어나는 문제점이 있다. 본 연구에서는 인자 모형을 통해 자료의 차원을 축소시킴로써 이러한 문제를 해결하고자 하였다. 국내의 주가수익률 자료에 통계적 인자 모형과 fundamental factor model을 적용하여 각각의 의미 있는 인자들을 얻은 후 이를 MGARCH모형에 적합시켰다. 또한 두 인자모형을 바탕으로 얻어진 최종 모형들의 MSE, MAD와 VaR(Value at Risk)를 계산하여 예측력을 비교하고자 한다.