초록
Stator insulation quality assessment for high voltage motors is a major issue for the reliable maintenance of industrial and power plants. To assess the condition of stator insulation, nondestructive tests were performed on the sixty coil groups of twelve motors. After completing the nondestructive tests, the AC voltage applied to the stator winding was gradually increased until insulation failure in order to obtain the breakdown voltage. The stator winding of each motor was classified into five coil groups; one group with healthy insulation and four groups with four different types of artificial defects. To analyze the breakdown voltage statistically, Weibull distribution was employed for the tests on the fifty coil groups of ten motors. The 50th percentile values of the measured breakdown voltages based on the statistical data of the five coil groups of ten motors were 26.1kV, 25.0kV, 24.4kV, 26.7kV and 30.5kV, respectively. Almost all of the failures were located in the line-end coil at the exit of the core slot. The breakdown voltages and the types of defects showed strong relation to the stator insulation tests such as in the case of dissipation factor and ac current. It is shown that the condition of the motor insulation can be determined from the relationship between the probability of failure and the type of defect.