MINTY'S LEMMA FOR STRONG IMPLICIT VECTOR VARIATIONAL INEQUALITY SYSTEMS

SEUNG HYUN KIM a AND BYUNG-SOO LEE b, *

ABSTRACT. In this paper, we consider a new Minty's Lemma for strong implicit vector variational inequality systems and obtain some existence results for systems of strong implicit vector variational inequalities which generalize some results in [1].

1. Introduction and Preliminaries

In [2], Huang and Fang introduced system of order complementarity problems and established some existence theorem by using Ky Fan Lemma and then Kassay, Kolumban and Pales [3] introduced and studied Minty and Stampaccia variational inequality system by using Kakutani-Fan-Glicksberg fixed point theorem. Recently, by those works and by using Kakutani-Fan-Glicksberg fixed point theorem, Fang and Huang [1] provided some existence results for systems of strong implicit vector variational inequalities, for a constant cone, in reflexive Banach spaces.

In this paper, we consider a new Minty's Lemma for strong implicit vector variational inequality systems and obtain some existence results for a system of strong implicit vector variational inequalities which generalize some results in [1].

Throughout this paper, unless other specified, X_i and Y_i are Banach spaces, $K_i \subset X_i$ are nonempty, bounded, closed and convex sets and $C_i \subset Y_i$ be pointed, closed and convex cones with $intC_i \neq \emptyset$. Let $T_i : K \to L(X_i, \widehat{Y}_i)$, where $\widehat{Y}_1 = Y_2 \times Y_3$, $\widehat{Y}_2 = Y_3 \times Y_1$, $\widehat{Y}_3 = Y_1 \times Y_2$ and $K = \prod_{i=1}^3 K_i$, and $h_i : K_i \times K_i \to X_i$ (i = 1, 2, 3) be mappings. A nonempty subset C of a Hausdorff topological vector space X is said to be a pointed convex cone if

$$C + \lambda C \subseteq C$$
 and $C \cap (-C) = {\overline{0}}$, for all $\lambda \ge 0$,

Received by the editors June 27, 2008. Revised October 16, 2008. Accepted October 28, 2008. *Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. 49J40.

Key words and phrases. strong implicit vector variational inequality system, pseudomonotone, properly quasimonotone, Minty's Lemma, hemi-continuous.

where $\overline{0}$ denotes the zero vector. If $C_1 \subset Y_1$ and $C_2 \subset Y_2$ are pointed convex cones, then $C_1 \times C_2 \subset Y_1 \times Y_2$ is also a pointed convex cone.

Now we consider the following system of strong implicit vector variational inequalities of Stampacchia type (SSIVVI-S) and Minty type (SSIVVI-M);

(SSIVVI-S) Find $x = (x_1, x_2, x_3) \in K$ such that

$$\langle T_i(x), h_i(x_i, y_i) \rangle \geq_{\widehat{C}_i} 0$$
, for $y_i \in K_i$ $(i = 1, 2, 3)$

and

(SSIVVI-M) Find $x = (x_1, x_2, x_3) \in K$ such that

$$\langle T_i(\widehat{x}_i), h_i(y_i, x_i) \rangle \leq_{\widehat{C}_i} 0$$
, for $y_i \in K_i \ (i = 1, 2, 3)$,

where $\widehat{C}_1 = C_2 \times C_3$, $\widehat{C}_2 = C_3 \times C_1$, $\widehat{C}_3 = C_1 \times C_2$, $\widehat{x}_1 = (y_1, x_2, x_3)$, $\widehat{x}_2 = (x_1, y_2, x_3)$, $\widehat{x}_3 = (x_1, x_2, y_3)$.

Definition 1.1. Let $T_i: K \to L(X_i, \widehat{Y}_i)$ and $h_i: K_i \times K_i \to X_i$ be mappings. $\{T_1, T_2, T_3\}$ is said to be co-pseudomonotone with respect to $\{h_1, h_2, h_3\}$ if for any $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in K$,

$$\langle T_i x, h_i(x_i, y_i) \rangle \geq_{\widehat{C}_i} 0 \Rightarrow \langle T_i y, h_i(y_i, x_i) \rangle \leq_{\widehat{C}_i} 0.$$

Example 1.1. Let $X_i, Y_i = \mathbb{R}, K_i = [0, 10], C_i = \mathbb{R}_+,$

$$T_i(x) = \begin{pmatrix} 2ix_1^2 \\ x_2 + x_3, \end{pmatrix}$$

 $h_i(x_i, y_i) = iy_i - i(x_i + 1)^2$ for all $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in K$. Let $x, y \in K$ such that

$$\langle T_i(x), h_i(x_i, y_i) \rangle = \begin{pmatrix} 2ix_1^2 \\ x_2 + x_3 \end{pmatrix} (iy_i - i(x_i + 1)^2)$$
$$= \begin{pmatrix} 2ix_1^2 (iy_i - i(x_i + 1)^2) \\ (x_2 + x_3) (iy_i - i(x_i + 1)^2) \end{pmatrix} \ge_{\widehat{C}_i} 0.$$

The inequality above implies

$$iy_i - i(x_i + 1)^2 \ge 0 \implies y_i \ge (x_i + 1)^2$$

 $\implies (y_i + 1)^2 \ge y_i + 1 \ge y_i \ge (x_i + 1)^2 \ge x_i$

It follows that

$$\langle T_i(y), h_i(y_i, x_i) \rangle = \begin{pmatrix} 2iy_1^2 \\ y_2 + y_3 \end{pmatrix} (ix_i - i(y_i + 1)^2)$$

$$= \begin{pmatrix} 2iy_1^2 (ix_i - i(y_i + 1)^2) \\ (y_2 + y_3) (ix_i - i(y_i + 1)^2) \end{pmatrix} \leq_{\widehat{C}_i} 0.$$

Hence $\{T_1, T_2, T_3\}$ is co-pseudomonotone with respect to $\{h_1, h_2, h_3\}$.

Definition 1.2. Let $T_i: K \to L(X_i, \widehat{Y}_i)$ and $h_i: K_i \times K_i \to X_i$ be mappings.

- (1) $\{T_1, T_2, T_3\}$ is said to be properly co-quasimonotone of Stampacchia type with respect to $\{h_1, h_2, h_3\}$ if for all $m \in \mathbb{N}$, for all vectors $v_i^1, \dots, v_i^m \in K_i$, and scalars $\lambda^1, \dots, \lambda^m > 0$ with $\sum_{j=1}^m \lambda^j = 1$ and $u_i := \sum_{j=1}^m \lambda^j v_i^j$, $\langle T_i \tilde{x_i}, h_i(u_i, v_i^j) \rangle \geq_{\widehat{C}_i} 0$ holds for all j, where
 - $\tilde{x_1} = (u_1, x_2, x_3), \ \tilde{x_2} = (x_1, u_2, x_3) \ \text{and} \ \tilde{x_3} = (x_1, x_2, u_3).$
- (2) $\{T_1, T_2, T_3\}$ is said to be properly co-quasimonotone of Minty type with respect to $\{h_1, h_2, h_3\}$ if for all $m \in \mathbb{N}$, for all vectors $v_i^1, \dots, v_i^m \in K_i$ and scalars $\lambda^1, \dots, \lambda^m > 0$ with $\sum_{j=1}^m \lambda^j = 1$ and $u_i := \sum_{j=1}^m \lambda^j v_i^j$, $\langle T_i \overline{x_i}, h_i(v_i^j, u_i) \rangle \leq_{\widehat{C}_i} 0$ holds for all i, where

$$\overline{x_1} = (v_1^j, x_2, x_3), \ \overline{x_2} = (x_1, v_2^j, x_3) \ \text{and} \ \overline{x_3} = (x_1, x_2, v_3^j)$$

Definition 1.3 ([1]). Let X and Y be Banach spaces, and K be a nonempty, closed and convex subset of X. A mapping $h: K \to Y$ is said to be hemicontinuous if, for any fixed $x, y \in K$, a mapping $L: [0,1] \to Y$ defined by L(t) = h((1-t)x + ty) is continuous at 0^+ , i.e., $\lim_{t\to 0^+} L(t) = L(0)$.

The following lemma is obtained from Theorem 3.3 in [4].

Lemma 1.1. Let X_i be reflexive Banach spaces, and let $T_i: K \to L(X_i, \widehat{Y}_i)$, where $\widehat{Y}_1 = Y_2 \times Y_3$, $\widehat{Y}_2 = Y_3 \times Y_1$ and $\widehat{Y}_3 = Y_1 \times Y_2$, and $h_i: K_i \times K_i \to X_i$ be mappings satisfying the following conditions (i = 1, 2, 3):

- (1) $\langle T_i(x), h_i(x_i, x_i) \rangle \in -\widehat{C}_i \ (i = 1, 2, 3);$
- (2) for any given $x = (x_1, x_2, x_3) \in K$, $\{T_1, T_2, T_3\}$ are properly co-quasimonotone of Minty type with respect to $\{h_1, h_2, h_3\}$;
- (3) h_i is continuous.

Then the following variational inequality (VI) has a solution;

(VI) Find $x_0 = (x_1^0, x_2^0, x_3^0) \in \prod_{i=1}^3 K_{M_i}$, where $K_{M_i} = K_i \cap M_i \neq \phi$ for M_i are finite-dimensional subspaces of X_i such that

$$\langle T_i(x^i), g(z_i, x_i^0) \rangle \leq_{\widehat{C}_i} 0, \ z_i \in K_{M_i} \text{ for } i = 1, 2, 3$$

where $x^1 = (z_1, x_2, x_3)$, $x^2 = (x_1, z_2, x_3)$ and $x^3 = (x_1, x_2, z_3)$.

Definition 1.4 ([6]). Let X, Y be Hausdorff topological spaces and $T: X \to 2^Y$ be a set-valued mapping. T is said to be *upper semicontinuous* (shortly, u.s.c.) at $x_0 \in X$ if for any neighborhood $N(T(x_0))$ of $T(x_0)$, there exists a neighborhood $N(x_0)$ of x_0 such that

 $\forall x \in N(x_0), T(x) \subset N(T(x_0))$. We say that T is u.s.c. if T is u.s.c. at every point $x \in X$.

Lemma 1.2 ([5]). Let X and Y be Hausdorff topological spaces, and $F: X \to 2^Y$ be a multivalued mapping. If Y is compact and F is closed, then F is u.s.c..

Theorem 1.1 ([6, Kakutani-Fan-Glicksberg fixed point theorem]).

Let X be a nonempty compact convex subset of a locally convex Hausdorff topological vector space E. Assume that $T: X \to 2^X$ is an u.s.c. mapping with nonempty closed convex values. Then T has a fixed point on X.

Lemma 1.3 ([1]). Let C be a pointed, closed and convex cone of a real Banach space E. Then for any, $a \in -C$ and $b \notin C$, we have $t_1a + t_2b \notin C$ for all $t_1, t_2 > 0$.

2. Main Results

First, we consider a new Minty's Lemma for a system of strong implicit vector variational inequalities.

Theorem 2.1. Let $T_i: K \to L(X_i, \widehat{Y}_i)$, and $h_i: K_i \times K_i \to X_i$ be mappings satisfying the following conditions (i = 1, 2, 3); for any given $x = (x_1, x_2, x_3) \in K$

- (1) $\{T_1, T_2, T_3\}$ is co-pseudomonotone with respect to $\{h_1, h_2, h_3\}$;
- (2) h_i is bilinear such that $h_i(a,b) + h_i(b,a) = 0$ for $a,b \in K_i$;
- (3) for fixed $v = (v_1, v_2, v_3) \in K$, $u \mapsto \langle T_i(u), h_i(u_i, v_i) \rangle$ is hemicontinuous (i = 1, 2, 3).

Then for a given point $x \in K$, the following conclusions are equivalent

- (i) $\langle T_i(x), h_i(x_i, y_i) \rangle \geq_{\widehat{C}_i} 0$, for $y_i \in K_i$;
- $\text{(ii)} \ \left\langle T_i(\widehat{x}_i), h_i(y_i, x_i) \right\rangle \leq_{\widehat{C}_i} 0, \ \text{ for } \ y_i \in K_i \ ; \ (i=1,2,3).$

Proof. (ii) is easily shown from (i) by the condition (1).

Conversely, for any given $y = (y_1, y_2, y_3) \in K$ and $t \in (0, 1)$, let $y^t = x + t(y - x)$. It follows from (ii) that

$$\langle T_i(y^t), h_i(y_i^t, x_i) \rangle \leq_{\widehat{C}_i} 0.$$

Now we show that $\langle T_i(y^t), h_i(y_i^t, y_i) \rangle \geq_{\widehat{C}_i} 0$ for all $t \in (0, 1)$. Suppose that there

exists some $s \in (0,1)$ such that

$$\langle T_i(y^s), h_i(y_i^s, y_i) \rangle \not\geq_{\widehat{C}_i} 0.$$

By Lemma 1.3 and the bilinearity of h_i , we have

$$\begin{split} \langle T_i(y^s), h_i(y_i^s, y_i^s) \rangle &= \langle T_i(y^s), h_i(y_i^s, x_i + s(y_i - x_i)) \rangle \\ &= \langle T_i(y^s), h_i((1 + s - s)y_i^s, (1 - s)x_i + sy_i) \rangle \\ &= s \langle T_i(y^s), h_i(y_i^s, y_i) \rangle + (1 - s) \langle T_i(y^s), h_i(y_i^s, x_i) \rangle \\ &\notin \widehat{C}_i, \end{split}$$

which contradicts condition (2).

Hence $\langle T_i(y^t), h_i(y_i^t, y_i) \rangle \geq_{\widehat{C}_i} 0$, for $t \in (0, 1)$. From condition (3), for fixed $v \in K$, a mapping $L_i : K \to \widehat{Y}_i$ defined by

$$L_i(u) = \langle T_i u, h_i(u_i, v_i) \rangle$$

for $u = (u_1, u_2, u_3) \in K$, is hemicontinuous, i.e., a mapping from [0,1] to \widehat{Y}_i

$$t \mapsto \langle T_i(x+t(y-x)), h_i(x_i+t(y_i-x_i), y_i) \rangle$$

is continuous at 0^+ for all $x, y \in K$.

Thus

$$\langle T_i x, h_i(x_i, y_i) \rangle = \lim_{t \to 0^+} \langle T_i(x + t(y - x)), h_i(x_i + t(y_i - x_i), y_i) \rangle$$

=
$$\lim_{t \to 0^+} \langle T_i(y^t), h_i(y_i^t, y_i) \rangle \ge_{\widehat{C}_i} 0, \ \forall y \in K.$$

Now, we consider some existence results for systems of strong implicit vector variational inequalities.

Theorem 2.2. Let X_i be reflexive Banach spaces, $T_i: K \to L(X_i, \widehat{Y}_i)$, and $h_i: K_i \times K_i \to X_i$ be mappings satisfying the following conditions (i = 1, 2, 3);

- (1) $\langle T_i(x), h_i(x_i, x_i) \rangle \leq_{\widehat{C}_i} 0 \ (i = 1, 2, 3);$
- (2) for any given $x = (x_1, x_2, x_3) \in K$, $\{T_1, T_2, T_3\}$ are properly co-quasimonotone of Minty type with respect to $\{h_1, h_2, h_3\}$;
- (3) for any given $x=(x_1,x_2,x_3)\in K$ and $z=(z_1,z_2,z_3)\in \prod_{i=1}^3 X_i,\ \langle T_i(\check{x}_i),z_i\rangle$ is continuous from the weak topology of X_k to the norm topology of \widehat{Y}_l , where for $k=1,\ l=3,\ for\ k=2,\ l=1$ and for $k=3,\ l=2,\ and\ \check{x}_1=(x_1,\cdot,x_3),$ $\check{x}_2=(x_1,x_2,\cdot),\ \check{x}_3=(\cdot,x_2,x_3)\in K.$
- (4) h is linear and continuous such that $h_i(a,b) + h_i(b,a) = 0$ for $a,b \in K_i$.

Then the problem (SSIVVI - M) is solvable.

Proof. Let $A_i = \{M_i : M_i \text{ is a finite dimensional subspace of } X_i \text{ with } K_{M_i} = K_i \cap M_i \neq \emptyset \}$ for i = 1, 2, 3. Define a multivalued mapping $G : \prod_{i=1}^{3} K_{M_i} \to 2^{\prod_{i=1}^{3} K_{M_i}}$ by

$$G(x) = \left\{ x_0 \in \prod_{i=1}^3 K_{M_i} : x_0 \text{ solves problem } (VI) \right\}, \ \forall x \in \prod_{i=1}^3 K_{M_i}.$$

By Lemma 1.1, (VI) is solvable, G(x) is nonempty. Since K_i is bounded, K is bounded. Now we claim that G(x) is closed. Let $\langle (x_1^n, x_2^n, x_3^n) \rangle$ be a sequence in G(x) converging to $(x_1^0, x_2^0, x_3^0) \in \prod_{i=1}^3 K_{M_i}$. Then

$$\langle T_i(x^i), g_i(z_i, x_i^0) \rangle = \left\langle T_i(x_i), h_i\left(z_i, \lim_{n \to \infty} x_i^n\right) \right\rangle$$

$$= \left\langle T_i(x^i), \lim_{n \to \infty} h_i(z_i, x_i^n) \right\rangle$$

$$= \lim_{n \to \infty} \langle T_i(x^i), g_i(z_i, x_i^n) \rangle \leq_{\widehat{C}_i} 0.$$

Hence G(x) is closed. And G(x) is convex, in fact, for $x=(x_1,x_2,x_3),\ y=(y_1,y_2,y_3)\in X$ and for $t\in(0,1),$

$$\begin{split} &t(x_1,x_2,x_3) + (1-t)(y_1,y_2,y_3) \\ &= (tx_1 + (1-t)y_1, tx_2 + (1-t)y_2, tx_3 + (1-t)y_3) \in G(x), \\ &\langle T_i(x^i), h_i(z_i, tx_i + (1-t)y_i) \rangle \\ &= \langle T_i(x^i), h_i(z_i, tx_i) \rangle + \langle T_i(x^i), h_i(z_i, (1-t)y_i) \rangle \\ &= \langle T_i(x^i), th_i(z_i, x_i) \rangle + \langle T_i(x^i), (1-t)h_i(z_i, y_i) \rangle \\ &= t\langle T_i(x^i), h_i(z_i, x_i) \rangle + (1-t)\langle T_i(x^i), h_i(z_i, y_i) \rangle \leq_{\widehat{G}_i} 0. \end{split}$$

Hence G(x) is convex. Now we show that $G\left(\prod_{i=1}^{3}K_{M_{i}}\right)$ is closed in $\prod_{i=1}^{3}K_{M_{i}} \times \prod_{i=1}^{3}K_{M_{i}}$. Let $\langle ((x_{1}^{n}, x_{2}^{n}, x_{3}^{n}), (y_{1}^{n}, y_{2}^{n}, y_{3}^{n})) \rangle$ be a sequence in $\prod_{i=1}^{3}K_{M_{i}} \times \prod_{i=1}^{3}K_{M_{i}}$ such that $\lim_{n \to \infty} ((x_{1}^{n}, x_{2}^{n}, x_{3}^{n}), (y_{1}^{n}, y_{2}^{n}, y_{3}^{n})) = ((x_{1}, x_{2}, x_{3}), (y_{1}, y_{2}, y_{3})), (y_{1}^{n}, y_{2}^{n}, y_{3}^{n}) \in G(x_{1}^{n}, x_{2}^{n}, x_{3}^{n}), \forall n \in \mathbb{N}.$

Now we show that $(y_1, y_2, y_3) \in G(x_1, x_2, x_3)$.

$$\left\langle T_1(z_1,x_2,x_3),h_1(z_1,y_1)\right\rangle = \left\langle \lim_{n\to\infty} T_1(z_1,x_2^n,x_3),h_1\left(z_1,\lim_{n\to\infty}y_1^n\right)\right\rangle$$

$$= \left\langle \lim_{n \to \infty} T_1(z_1, x_2^n, x_3), \lim_{n \to \infty} h_1(z_1, y_1^n) \right\rangle$$

$$= \lim_{n \to \infty} \left\langle T_1(z_1, x_2^n, x_3), h_1(z_1, y_1^n) \right\rangle \leq_{\widehat{C}_1} 0.$$

$$\left\langle T_2(x_1, z_2, x_3), h_2(z_2, y_2) \right\rangle = \left\langle \lim_{n \to \infty} T_2(x_1, z_2, x_3^n), h_2\left(z_2, \lim_{n \to \infty} y_2^n\right) \right\rangle$$

$$= \left\langle \lim_{n \to \infty} T_2(x_1, z_2, x_3^n), \lim_{n \to \infty} h_2(z_2, y_2^n) \right\rangle$$

$$= \lim_{n \to \infty} \left\langle T_2(x_1, z_2, x_3^n), h_2(z_2, y_2^n) \right\rangle \leq_{\widehat{C}_2} 0.$$

$$\left\langle T_3(x_1, x_2, z_3), h_3(z_3, y_3) \right\rangle = \left\langle \lim_{n \to \infty} T_3(x_1^n, x_2, z_3), h_3\left(z_3, \lim_{n \to \infty} y_3^n\right) \right\rangle$$

$$= \left\langle \lim_{n \to \infty} T_3(x_1^n, x_2, z_3), \lim_{n \to \infty} h_3(z_3, y_3^n) \right\rangle$$

$$= \lim_{n \to \infty} \left\langle T_3(x_1^n, x_2, z_3), h_3(z_3, y_3^n) \right\rangle \leq_{\widehat{C}_3} 0.$$

Hence $G(\prod_{i=1}^{3} K_{M_i})$ is closed in $\prod_{i=1}^{3} K_{M_i} \times \prod_{i=1}^{3} K_{M_i}$. Since G is closed, G has a closed graph. Since G is closed and bounded, G is u.s.c.. The Kakutani-Fan-Glicksberg fixed point theorem implies that there exists $x_0 \in \prod_{i=1}^{3} K_{M_i}$ such that

$$\langle T_i(x_0^i), h_i(z_i, x_i^0) \rangle \leq_{\widehat{C}_i} 0, \ \forall z_i \in K_{M_i} \ (i = 1, 2, 3),$$

where $x_0^1 = (z_1, x_2^0, x_3)$, $x_0^2 = (x_1, z_2, x_3^0)$ and $x_0^3 = (x_1^0, x_2, z_3)$.

For any $M := (M_1, M_2, M_3) \in \prod_{i=1}^3 \mathcal{A}_i$, let S_M be the solution set of the following vector variational inequality;

Find $x \in K$ such that

$$\langle T_i(x^i), h_i(z_i, x_i) \rangle \leq_{\widehat{C}_i} 0, \ \forall z_i \in K_{M_i} \ (i = 1, 2, 3).$$

By the similar argument, S_M is nonempty and bounded for all $M \in \prod_{i=1}^3 K_{M_i}$. Denote by \overline{S}_M the weak closure of S_M in $\prod_{i=1}^3 X_i$. Since X_i (i=1,2,3) are reflexive, \overline{S}_M is weakly compact.

Let $M_i^k \in \mathcal{A}_i$ for $k = 1, \dots, n$. For any $M^k = (M_1^k, M_2^k, M_3^k) \in \prod_{i=1}^3 \mathcal{A}_i$ for $k = 1, \dots, n$,

$$S_{L_M} \subset \bigcap_k S_{M^k},$$

where L_M denotes the linear subspace spanned by $\bigcup_k M^k$.

Hence $\{\overline{S}_M: M \in \prod_{i=1}^3 \mathcal{A}_i\}$ has the finite intersection property

$$\bigcap_{M \in \prod_{i=1}^{3} A_i} \overline{S}_M \neq \emptyset.$$

Let

$$x^* = (x_1^*, x_2^*, x_3^*) \in \bigcap_{M \in \prod\limits_{i=1}^3 \mathcal{A}_i} \overline{S}_M.$$

We claim that

$$\langle T_i(x_*^i), h_i(z_i, x_i^*) \rangle \leq_{\widehat{C}_i} 0, \ \forall z_i \in K_i \ (i = 1, 2, 3),$$

where $x_*^1 = (z_1, x_2^*, x_3), x_*^2 = (x_1, z_2, x_3^*)$ and $x_*^3 = (x_1^*, x_2, x_3).$

In fact, for any given $x_i \in K_i$, choose $M_i \in \mathcal{A}_i$ such that $x_i, x_i^* \in M_i$. Since $x^* \in \overline{S}_M$, there exists a net $\langle x^{\alpha} \rangle = \langle (x_1^{\alpha}, x_2^{\alpha}, x_3^{\alpha}) \rangle \in S_M$ converging to x^* weakly in S_M . Hence $\langle T_i(x_{\alpha}^i), h_i(z_i, x_i^{\alpha}) \rangle \leq_{\widehat{C}_i} 0$. By the condition (3),

$$\langle T_i(x_*^i), h_i(z_i, x_i^*) \rangle \leq_{\widehat{C}_i} 0, \ \forall z_i \in K_i \ (i = 1, 2, 3).$$

Theorem 2.3. Let X_i are reflexive Banach spaces, $T_i: K \to L(X_i, \widehat{Y}_i)$ and $h_i: K_i \times K_i \to X_i$ be mappings (i = 1, 2, 3).

(1) for fixed $v = (v_1, v_2, v_3) \in K$, $u \mapsto \langle T_i(u), h_i(u_i, v_i) \rangle$ is hemicontinuous (i = 1, 2, 3);

- (2) for any given $x = (x_1, x_2, x_3) \in K$ and $\{T_1, T_2, T_3\}$ is co-pseudomonotone and properly co-quasimonotone of Stampacchia type with respect to $\{h_1, h_2, h_3\}$;
- (3) $\langle T_i(x), h_i(x_i, x_i) \rangle \geq_{\widehat{C}_i} 0 \text{ for all } x \in K;$
- (4) for any given $x \in K$ and $z = (z_1, z_2, z_3) \in \prod_{i=1}^3 X_i$, $\langle T_i(\check{x}_i), z_i \rangle$ is continuous from the weak topology of X_k to the norm topology of \hat{Y}_l , where for k = 1, l = 3, for k = 2, l = 1 and for k = 3, l = 2, and \check{x}_1 , \check{x}_2 , $\check{x}_3 \in K$.
- (5) h is bilinear and continuous such that $h_i(a,b) + h_i(b,a) = 0$ for $a,b \in K_i$. Then (SSIVVI – S) is solvable.

Proof. From the existence results for strong implicit vector variational inequality (in [4]), there exists $x^* = (x_1^*, x_2^*, x_3^*) \in K$ such that

$$\langle T_i(x_{i*}), h_i(x_i, x_i^*) \rangle \leq_{\widehat{C}_i} 0, \ \forall x_i \in K_i \ (i = 1, 2, 3),$$

where $x_{1*} = (x_1, x_2^*, x_3), x_{2*} = (x_1, x_2, x_3^*)$ and $x_{3*} = (x_1^*, x_2, x_3)$.

From conditions (1), (2) and (3) imply that $T_i(\overline{x}_i^*)$ (i = 1, 2, 3) satisfy all the assumptions of Minty's lemma. Hence,

$$\langle T_i(x^*), h_i(x_i^*, x_i) \rangle \ge_{\widehat{C}_i} 0, \ \forall x_i \in K_i \ (i = 1, 2, 3).$$

By putting $h_i(x, y) = y - g_i(x)$, where $g_i : K_i \to X_i (i = 1, 2, 3)$, in Theorem 2.2 and Theorem 2.3, we obtain the following Corollary 2.1 and Corollary 2.2, respectively, which extend some results in [1].

Corollary 2.1. Let $T_i: K \to L(X_i, \widehat{Y}_i), g_i: K_i \to X_i \ (i = 1, 2, 3)$ be mappings.

- (1) for any given $x = (x_1, x_2, x_3) \in K$, $\{T_1, T_2, T_3\}$ is properly co-quasimonotone of Minty type with respect to $\{g_1, g_2, g_3\}$;
- (2) for any given $x \in K$ and $z = (z_1, z_2, z_3) \in \prod_{i=1}^3 X_i$, $\langle T_i(\check{x}_i), z_i \rangle$ is continuous from the weak topology of X_k to the norm topology of \hat{Y}_l , where for k = 1, l = 3, for k = 2, l = 1 and for k = 3, l = 2, and \check{x}_1 , \check{x}_2 , $\check{x}_3 \in K$.

Then there exists $x^* = (x_1^*, x_2^*, x_3^*) \in K$ such that

$$\langle T_i(x_{i*}), x_i^* - g_i(x) \rangle \leq_{\widehat{C}_i} 0, \ \forall x_i \in K_i \ (i = 1, 2, 3).$$

Corollary 2.2. Let $T_i: K \to L(X_i, \widehat{Y}_i), g_i: K_i \to X_i \ (i = 1, 2, 3)$ be mappings.

- (1) for fixed $v = (v_1, v_2, v_3) \in K$, $u \mapsto \langle T_i(u), h_i(u_i, v_i) \rangle$ is hemicontinuous (i = 1, 2, 3);
- (2) for any given $x \in K$, $\{T_1, T_2, T_3\}$ is co-pseudomonotone with respect to $\{g_1, g_2, g_3\}$;
- (3) for any given $x \in K$, $\{T_1, T_2, T_3\}$ is properly co-quasimonotone of Stampacchia type with respect to $\{g_1, g_2, g_3\}$;
- (4) for any given $x \in K$ and $z \in \prod_{i=1}^{3} X_i$, $\langle T_i(\check{x}_i), z_i \rangle$ is continuous from the weak topology of X_k to the norm topology of \widehat{Y}_l , where for k=1, l=3, for k=2, l=1 and for k=3, l=2, and \check{x}_1 , \check{x}_2 , $\check{x}_3 \in K$.

Then there exists $x^* \in K$ such that

$$\langle T_i(x_{i*}), x_i - g_i(x_i^*) \rangle \ge_{\widehat{C}_i} 0, \ \forall x_i \in K_i \ (i = 1, 2, 3).$$

REFERENCES

- 1. Y.P. Fang & N.J. Huang: Existence results for system of strong implicit vector variational inequalities. *Acta Math. Hungar.* **103** (2004), no. 4., 265-277.
- Variational-like inequalities with generalized monotone mappings in Banach spaces. J. Optim. Theory Appl. 118 (2003), 327-338.
- 3. G. Kassay; J. Kolumbán & Z. Páles: Factorization of Minty and Stampacchia variational inequality system. *European J. Oper. Res.* **143** (2002), no. 2., 377-389.
- 4. S.H. Kim & B.S. Lee: New generalized Minty's Lemma. (submitted).
- 5. G.M. Lee; D.S. Kim; B.S. Lee & S.J. Cho: Generalized vector variational inequality and fuzzy extension. *Appl. Math. Lett.* 6 (1993), no. 6., 47-51.
- K. Fan: Some properties of convex sets related to fixed point theorems. Math. Ann. 266
 (1984), 519-537.

^aDEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, BUSAN 608-736, KOREA *Email address*: jiny0610@hotmail.com

^bDEPARTMENT OF MATHEMATICS, KYUNGSUNG UNIVERSITY, BUSAN 608-736, KOREA *Email address*: bslee@ks.ac.kr