DOI QR코드

DOI QR Code

Generation of Meteorological Parameters for Tropospheric Delay on GNSS Signal

GNSS 신호의 대류층 지연오차 보정을 위한 기상 정보 생성

  • Published : 2008.09.15

Abstract

The GNSS (Global Navigation Satellite System) signal is delayed by the neutral atmosphere at the troposphere, so that the delay is one of major error sources for GNSS precise positioning. The tropospheric delay is an integrated refractive index along the path of GNSS signal. The refractive index is empirically related to standard meteorological variables, such as pressure, temperature and water vapor partial pressure, therefore the tropospheric delay could be calculated from them. In this paper, it is presented how to generate meteorological data where observation cannot be performed. KASI(Korea Astronomy & Space Science Institute) has operated 9 GPS (Global Positioning System) permanent stations equipped with co-located MET3A, which is a meteorological sensor. Meteorological data are generated from observations of MET3A by Ordinary Kriging. To compensate a blank of observation data, simple models which consider periodic characteristics for meteorological data, are employed.

대류층의 중성 대기는 전자가파의 신호 지연을 일으키기 때문에, GNSS(Global Navigation Satel-lite System)를 이용한 정밀측위의 가장 큰 오차요인으로 작용한다. 대류층 지연오차는 대류층의 굴절률과 연관 있으며, 대류층의 굴절률은 경험적으로 압력, 온도 및 수증기 분압으로 표현된다. 따라서 GNSS 안테나 위치의 기상 정보를 알고 있다면, 대류층 지연오차는 경험적 법칙에 의해 산출될 수 있다. 이 연구에서는 임의의 장소와 시간에 대한 대류층 지연오차를 생성하기 위한 기상정보 생성에 대하여 연구하였다. 한국천문연구원이 운영하는 9개의 상시 관측소에 설치된 디지털 기상 센서의 관측값을 가지고 범용 크리깅 (Ordinary Kriging)을 적용하여 기상 정보를 생성하였고, 상시 관측소의 데이터 공백을 메우기 위해 각 상시관측소의 기상 데이터를 분석하여 수치 모델을 만들어 보완하였다.

Keywords

References

  1. 박관동, 하지현, 조정호, 박필호 2003, 제 10차 GNSS Workshop 학술발표 논문집 (서울 : GNSS 기술 협의회), p.279
  2. 백정호, 이재원, 최병규, 조정호 2007, 한국우주과학회지, 24, 275
  3. Bai, Z. & Feng, Y. 2003, Journal of Global Positioning System, 2, 83 https://doi.org/10.5081/jgps.2.2.83
  4. Black, H. D. 1978, Journal of Geophysical Research, 89, B4, 1825
  5. Collins, J. P. 1999, Technical Report of Department of Geodesy and Geomatics Engineering, University of New Brunswick (Assessment and Development of a Tropospheric Delay Model for Aircraft Users of the Global Positioning System), No.203
  6. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., & Elgered, G. 1985, Radio Science, 20, 1593 https://doi.org/10.1029/RS020i006p01593
  7. Farah, A., Moore, T., & Hill, C. J. 2005, The Journal of Navigation, 58, 459 https://doi.org/10.1017/S0373463305003310
  8. Feng, K., Zhang, J., Zhang, Y., Yang, Z., & Chao, W. 1978, The Numerical Calculation Method (Beijing: National Defense Industry Press), p.311
  9. Goad, C. C. & Goodman, L. 1974, Paper presented at the AGU Fall Annual Meeting, 12-17 December, San Francisco, California
  10. Haurwitz, B. & Cowley, A. D. 1965, Monthly Weather Review, 93, 505 https://doi.org/10.1175/1520-0493(1965)093<0505:TLASAT>2.3.CO;2
  11. Hopfield, H. S. 1971, Radio Science, 6, 357 https://doi.org/10.1029/RS006i003p00357
  12. Ifadis, I. 1986, Technical Report of School of Electrical and Computer Engineering, Chalmers University of Technology (The atmospheric delay of radio waves: Modeling the elevation dependence on a global scale), No.38L
  13. Jarvis, C. H. & Stuart, N. 2001, Journal of Applied Meteorology, 40, 1075 https://doi.org/10.1175/1520-0450(2001)040<1075:ACASFI>2.0.CO;2
  14. Jin, S., Park, J.-U., Cho, J.-H., & Park, P.-H. 2007, Journal of Geophysical Research, 112, D09110 https://doi.org/10.1029/2006JD007772
  15. Klein Baltink, H., Derks, H. J. P., Van Lammeren, A. C. A. P., Ambrosius, B. A. C., Van der Hoeven, Van der Marel, A. G. A., Kleijer, H. F., & K6sters, A. J. M. 1999, Netherlands Remote Sensing Board (GPS water vapour meteorology), Rep. USP-298-27
  16. Levenberg, K. 1944, Quarterly of Applied Mathematics, 2, 164 https://doi.org/10.1090/qam/10666
  17. Marquardt, D. W. 1963, Journal of the Society for Industrial and Applied Mathematics, 11, 431 https://doi.org/10.1137/0111030
  18. Murray, F. W. 1967, Journal of Applied Meteorology, 6, 203 https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
  19. Parkinson, B. W. & Spilker, J. J. 1996, Global Positioning System: Theory and Applications Volume I (Washington, DC: American Institute of Aeronautics and Astronautics), p.524
  20. Pernter, J. M. 1914, Monthly Weather Review, 42, 655 https://doi.org/10.1175/1520-0493(1914)42<655:PSOOKO>2.0.CO;2
  21. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, Numerical Recipes in Fortran (New York: Cambridge University Press), pp.678-683
  22. Remondi, B. W. 1984, PhD Thesis, University of Texas at Austin
  23. Saastamoinen, J. 1973, Journal of Geodesy, 47, 13
  24. Schwerdtfeger, W. & Prohaska, F. 1956, Journal of the Atmospheric Sciences, 13, 217 https://doi.org/10.1175/1520-0469(1956)013<0217:TSAPOI>2.0.CO;2
  25. Smith, E. K. & Weintraub, S. 1953, Proceedings of the I.R.E, 41 (New York: Institute of Radio Engineers), p.1035
  26. Thayer, G. D. 1974, Radio Science, 9, 803 https://doi.org/10.1029/RS009i010p00803
  27. Webb, F. H. & Zumberge, J. F. 1993, An Introduction to GIPSY/OASIS-II (Pasadena: JPL Publication), D-ll088

Cited by

  1. Comparison of Tropospheric Signal Delay Models for GNSS Error Simulation vol.26, pp.2, 2009, https://doi.org/10.5140/JASS.2009.26.2.211