표면개시중합법을 이용한 셀룰로스 필터지의 젖음성 조절

Tailoring Surface Wetness of Cellulose by Surface Initiate Polymerization

  • 양유미 (숭실대학교 유기신소재.파이버공학과) ;
  • 최형민 (숭실대학교 유기신소재.파이버공학과) ;
  • 곽영제 (숭실대학교 유기신소재.파이버공학과)
  • Yang, Yu-Mi (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Choi, Hyung-Min (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kwark, Young-Je (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 발행 : 2008.10.31

초록

The hydrophilic/hydrophobic nature of the cellulose could be tuned by introducing a polymer layer onto the surface using surface initiated polymerization techniques. Initiating groups for the polymerization could be immobilized by reacting 2-bromoisobutyrylbromide with the hydroxyl groups on cellulose. Thereafter, using atom transfer radical polymerization the modified cellulose was grafted with hydrophobic poly(methyl acrylate) (PMA), or with poly(N-isopropyl acrylamide) (PNIPAAm) which have been known for having lower critical solution temperature. We characterized the modified surface of cellulose using SEM-EDS and XPS, and FT-IR. The contact angles of the polymer grafted cellulose showed that the hydrophilic nature of cellulose surface was changed to hydrophobic after being grafted with PMA and to temperature dependent hydrophilic/hydrophobic with PNIPAAm.

키워드

참고문헌

  1. P. Aussillous and D. Quere, "Liquid Marbles", Nature, 2001, 411, 924-927 https://doi.org/10.1038/35082026
  2. J. Bico, U. Thiele, and D. Quere, 'Wetting of Textured Surfaces', Colloid Surfaces A, 2002, 206, 41-46 https://doi.org/10.1016/S0927-7757(02)00061-4
  3. X. Feng and L. Jiang, 'Design and Creation of Superwetting/Antiwetting Surfaces', Adv Mater, 2006, 18, 3063-3078 https://doi.org/10.1002/adma.200501961
  4. D. Bontempo, N. Tirelli, K. Feldman, G. Masci, V. Crescenzi, and J. A. Hubbell, 'Atom Transfer Radical Polymerization as a Tool for Surface Functionalization', Adv Mater, 2002, 14, 1239-1241 https://doi.org/10.1002/1521-4095(20020903)14:17<1239::AID-ADMA1239>3.0.CO;2-P
  5. Y. Ito, Y. Ochiai, Y. S. Park, and Y. Imanishi, 'pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane', J Am Chem Soc, 1997, 119, 1619-1623 https://doi.org/10.1021/ja963418z
  6. Y. Shirai and N. Tsubokawa, 'Grafting of Polymers onto Ultrafine Inorganic Particle Surface: Graft Polymerization of Vinyl Monomers Initiated by the System Consisting of Trichloroacetyl Groups on the Surface and Molybdenum Hexacarbonyl', React Funct Polym, 1997, 32, 153-160 https://doi.org/10.1016/S1381-5148(96)00078-8
  7. P. Liu and Z. Su, 'Preparation of Polystyrene Grafted Silica Nanoparticles by Two-steps UV Induced Reaction', J Photochem Photobiol A: Chem, 2004, 167, 237-240 https://doi.org/10.1016/j.jphotochem.2004.05.030
  8. M. Husseman, E. Malmström, M. McNamara, D. Mecerreyes, D. G. Benoit, J. L. Hedrick, P. Mansky, E. Huang, T. P. Russell, and C. J. Hawker, 'Controlled Synthesis of Polymer Brushes by 'Living' Free Radical Polymerization Techniques', Macromolecules, 1999, 32, 1424-1431 https://doi.org/10.1021/ma981290v
  9. M. Ejax, S. Yamamoto, K. Ohno, Y. Tsujii, and T. Fukuda, 'Controlled Graft Polymerization of Methyl Methacrylate on Silicon Substrate by the Combined Use of the Langmuir-Blodgett and Atom Transfer Radical Polymerization Techniques', Macromolecules, 1998, 31, 5934-5936 https://doi.org/10.1021/ma980240n
  10. B. Zhao, W. J. Brittain, W. Zhou, and S. Z. D. Cheng, 'AFM Study of Tethered Polystyrene-b-poly(methyl methacrylate) and Polystyrene-b-poly(methyl acrylate) Brushes on Flat Silicate Substrates', Macromolecules, 2000, 33, 8821-8827 https://doi.org/10.1021/ma000434e
  11. U. Schmelmer, R. Jordan, W. Geyer, W. Eck, A. Gölzhäuser, M. Grunze, and A. Ulman, 'Surface-Initiated Polymerization on Self-Assembled Monolayers: Amplification of Patterns on the Micrometer and Nanometer Scale', Angew Chem Int Ed, 2003, 42, 559-563 https://doi.org/10.1002/anie.200390161
  12. D. Baskaran, J. W. Mays, and M. S. Bratcher, 'Polymer-Grafted Multiwalled Carbon Nanotubes through Surface-Initiated Polymerization', Angew Chem Int Ed, 2004, 43, 2138-2142 https://doi.org/10.1002/anie.200353329
  13. J. Wang and K. Matyjaszewski, 'Controlled/'living' Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-metal Complexes', J Am Chem Soc, 1995, 117, 5614-5615 https://doi.org/10.1021/ja00125a035
  14. M. Kato, M. Kamigaito, M. Samamoto, and T. Higashimura, 'Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris(triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization', Macromolecules, 1995, 28, 1721-1723 https://doi.org/10.1021/ma00109a056