DOI QR코드

DOI QR Code

다중안테나 OFDM 멀티캐스트 시스템을 위한 동적 자원할당 알고리즘

Dynamic Resource Allocation Scheme for Multiple Antenna OFDM-based Wireless Multicast Systems

  • 슈지안 (연세대학교 전기.전자공학과) ;
  • 이상진 (연세대학교 전기.전자공학과) ;
  • 강우석 (연세대학교 전기.전자공학과) ;
  • 서종수 (연세대학교 전기.전자공학과)
  • Xu, Jian (Dept. of Electrical & Electronic Eng., Yonsei Univ.) ;
  • Lee, Sang-Jin (Dept. of Electrical & Electronic Eng., Yonsei Univ.) ;
  • Kang, Woo-Seok (Dept. of Electrical & Electronic Eng., Yonsei Univ.) ;
  • Seo, Jong-Soo (Dept. of Electrical & Electronic Eng., Yonsei Univ.)
  • 발행 : 2008.11.30

초록

최근 차세대 무선 통신 시스템으로 다중 안테나 직교 주파수 다중접속 방식(OFDM)에서 적응적 자원 할당 기술은 사용자들의 QoS를 보장하며 성능을 개선 할 수 있는 중요한 연구 분야로 각광을 받고 있다. 그러나, 현재까지, 대부분의 자원 할당 알고리즘은 유니캐스트 시스템에 국한되어 연구가 진행되고 있다. 따라서, 본 논문에서는 다중 안테나 직교 주파수 다중접속 방식 시스템에서 멀티캐스트 서비스를 위한 동적 자원 할당 기술을 제안하고 이에 대한 전산모의 실험 결과를 통하여 성능 개선 효과를 분석하였다. 실험 분석 결과, 제안하는 동적 자원 할당 기술이 기존의 방식에 비해 우월함을 증명하였다.

Multiple antenna orthogonal frequency division multiplexing (OFDM) is a promising technique for the high downlink-capacity in the next generation wireless systems, in which adaptive resource allocation is an important research issue that can significantly improve the performance with guaranteed QoS for users. However, most of the current resource allocation algorithms are limited to unicast system. In this paper, dynamic resource allocation is studied for multiple antenna OFDM based systems with multicast service. In the simulation, the performance of multicast system was compared with that of the unicast system. Numerical results also show that by using the proposed algorithms the system capacity is significantly improved compared with the conventional scheme.

키워드

참고문헌

  1. S. Y. Hui and K. H. Yeung, "Challenges in the migration to 4g mobile systems," IEEE Commun. Mag., vol. 41, pp. 54-56, December 2003
  2. U. Varshney, "Multicast over wireless networks," Communications of the ACM, vol. 45, pp. 31-37, Dec. 2002 https://doi.org/10.1145/585597.585598
  3. L. J. Cimini and N. R. Sollenberger, "OFDM with diversity and coding for advanced cellular internet services," in Proc. Globecom'1997. IEEE, Nov. 1997, pp. 305-309
  4. J. Jang and K. B. Lee, "Transmit power adaptation for multiuser ofdm systems," IEEE J. Select. Areas Commun., vol. 21, no. 2, February 2003
  5. C. Y. Wong, R. S. Cheng, K. B. Letaief, et al., "Multiuser ofdm with adaptive subcarrier, bit, and power allocation," IEEE J. Select. Areas Commun., vol. 17, pp. 1747-1758, Oct. 1999 https://doi.org/10.1109/49.793310
  6. Z. Shen, J. G. Andrews, and B. L. Evans, "Adaptive resource allocation in multiuser ofdm systems with proportional rate constraints," IEEE Trans.Wireless Commun., vol. 4, no. 6, pp. 2726-2737, Nov. 2005 https://doi.org/10.1109/TWC.2005.858010
  7. Y. J. Zhang and K. B. Letaief, "Cross-layer adaptive resource management for wireless packet networks with ofdm signaling," IEEE Trans. Wireless Commun., vol. 5, no. 11, pp. 3244-3254, November 2006 https://doi.org/10.1109/TWC.2006.05002
  8. T. M. Cover, "Broadcast channels," IEEE Trans. Inform. Theory, vol. IT-18, no. 1, pp. 2-14, Jan. 1972
  9. L. Li and A. Goldsmith, "Capacity and optimal resource allocation for fading broadcast channels. i. ergodic capacity," IEEE Trans. Info. Theory, vol. 47, no. 3, pp. 1083-1102, 2001 https://doi.org/10.1109/18.915665
  10. H. Won, H. Cai, et al., "Multicast scheduling in cellular data networks," in Proc. Infocom 2007. IEEE, pp. 1172-1180, May 2007
  11. S. Yuk and D. Cho, "Parity-based reliable multicast method for wireless LAN environments," in Proc. IEEE VTC, pp. 1217-1221,1999