References
- Suh, J. Acc. Chem. Res. 2003, 36, 562-570 https://doi.org/10.1021/ar020037j
- Chei, W. S.; Suh, J. Prog. Inorg. Chem. 2007, 55, 79-142 https://doi.org/10.1002/9780470144428.ch2
- Jeon, J. W.; Son, S. J.; Yoo, C. E.; Hong, I. S.; Song, J. B.; Suh, J. Org. Lett. 2002, 4, 4155-4158 https://doi.org/10.1021/ol0269300
- Jeon, J. W.; Son, S. J.; Yoo, C. E.; Hong, I. S.; Suh, J. Bioorg. Med. Chem. 2003, 11, 2901-2910 https://doi.org/10.1016/S0968-0896(03)00216-5
- Chae, P. S.; Kim, M.-s.; Jeung, C.-S.; Lee, S. D.; Park, H.; Lee, S. Y.; Suh, J. J. Am. Chem. Soc. 2005, 127, 2396-2397 https://doi.org/10.1021/ja044043h
- Kim, M.-s.; Jeon, J. W.; Suh, J. J. Biol. Inorg. Chem. 2005, 10, 364-372 https://doi.org/10.1007/s00775-005-0646-4
- Kim, M. G.; Kim, M.-s.; Lee, S. D.; Suh, J. J. Biol. Inorg. Chem. 2006, 11, 867-875 https://doi.org/10.1007/s00775-006-0139-0
- Kim, M. G.; Kim, M.-s.; Park, H.; Lee, S.; Suh, J. Bull. Korean Chem. Soc. 2007, 28, 1151-1155 https://doi.org/10.5012/bkcs.2007.28.7.1151
- Suh, J.; Yoo, S. H.; Kim, M. G.; Jeong, K.; Ahn, J. Y.; Kim, M.-s.; Chae, P. S.; Lee, T. Y.; Lee, J.; Lee, J.; Jang, Y. A.; Ko, E. H. Angew. Chem. Intl. Ed. Engl. 2007, 46, 7064-7067 https://doi.org/10.1002/anie.200702399
- Ravi Rajagopalan, P. T.; Grimme, S.; Pei, D. Biochemistry 2000, 39, 779-790 https://doi.org/10.1021/bi9919899
- Hardy, J.; Selkoe, J. Science 2002, 297, 353-356 https://doi.org/10.1126/science.1072994
- Touyz, R. M.; Schifferin, E. L. Pharmacol. Rev. 2000, 52, 639-672
- Gibson, W. T.; Pissios, P.; Trombly, D. J.; Luan, J.; Keogh, J.; Wareham, N. J.; Maratos-Flier, E.; O'Rahilly, S.; Farooqu, I. S. Obes. Res. 2004, 12, 743-749 https://doi.org/10.1038/oby.2004.89
- Takasaki, B. K.; Kim, J. H.; Rubin, E.; Chin, J. J. Am. Chem. Soc. 1993, 115, 1157-1159 https://doi.org/10.1021/ja00056a055
- Kim, J. H.; Britten, J.; Chin, J. J. Am. Chem. Soc. 1993, 115, 3618-3622 https://doi.org/10.1021/ja00062a027
- Gomez, K.; Gonzalez, G.; Martinez, M.; Mendoza, C.; Sienra, B. Polyhedron 2006, 25, 3509-3518 https://doi.org/10.1016/j.poly.2006.06.041
- Yoo, S. H.; Lee, B. J.; Kim, H.; Suh, J. J. Am. Chem. Soc. 2005, 127, 9593-9602 https://doi.org/10.1021/ja052191h
Cited by
- DNA immobilization, delivery and cleavage on solid supports vol.21, pp.29, 2011, https://doi.org/10.1039/c0jm04359a
- Metal-containing peptide nucleic acid conjugates vol.40, pp.27, 2011, https://doi.org/10.1039/c0dt01706j
- Progress in Designing Artificial Proteases: A New Therapeutic Option for Amyloid Diseases vol.3, pp.1, 2013, https://doi.org/10.1002/ajoc.201300135
- DNA und Proteine schneiden - so geht es mit Metallkomplexen vol.61, pp.10, 2013, https://doi.org/10.1002/nadc.201390312
- Peptide Hydrolysis by Metal-Cyclen Complexes and Their Analogues: Insights from Theoretical Studies vol.33, pp.8, 2014, https://doi.org/10.1021/om400903r
- Theoretical Insights into the Functioning of Metallopeptidases and Their Synthetic Analogues vol.48, pp.2, 2015, https://doi.org/10.1021/ar500301y
- Target-selective peptide-cleaving catalysts as a new paradigm in drug design vol.38, pp.7, 2009, https://doi.org/10.1039/b710345j
- Proteolytic activity of Co(III) complex of 1-oxa-4,7,10-triazacyclododecane: a new catalytic center for peptide-cleavage agents vol.14, pp.1, 2009, https://doi.org/10.1007/s00775-008-0434-z
- Cleavage Agents for α-Synuclein vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.882
- Metal complexes as artificial proteases: toward catalytic drugs vol.12, pp.2, 2008, https://doi.org/10.1016/j.cbpa.2008.01.028
- Cleavage agents for soluble oligomers of human islet amyloid polypeptide vol.13, pp.5, 2008, https://doi.org/10.1007/s00775-008-0354-y
- Artificial proteases toward catalytic drugs for amyloid diseases vol.81, pp.2, 2009, https://doi.org/10.1351/pac-con-08-07-02
- Effect of Alkali Metal Ions on Nucleophilic Substitution Reactions of 4-Nitrophenyl X-Substituted Benzoates with Alkali Metal Ethoxides in Anhydrous Ethanol vol.31, pp.2, 2008, https://doi.org/10.5012/bkcs.2010.31.02.303
- Mechanisms of peptide and phosphoester hydrolysis catalyzed by two promiscuous metalloenzymes (insulin degrading enzyme and glycerophosphodiesterase) and their synthetic analogues vol.10, pp.4, 2020, https://doi.org/10.1002/wcms.1466
- Peptide Hydrolysis by Metal (Oxa)cyclen Complexes: Revisiting the Mechanism and Assessing Ligand Effects vol.60, pp.2, 2021, https://doi.org/10.1021/acs.inorgchem.0c02859