DOI QR코드

DOI QR Code

Toxic Gas Removal Behaviors of Porous Carbons in the Presence of Ag/Ni Bimetallic Clusters

  • Published : 2008.04.20

Abstract

Ag/Ni bimetallic cluster loading on porous carbon fibers was accomplished in order to enhance the HCl removal efficiency of the carbons. The surface properties of the Ag/Ni/carbons were determined by XRD and SEM. N2/77 K adsorption isotherms were investigated using BET and Boers t-plot methods. The HCl removal efficiency was confirmed by a gas chromatography technique, and it was found that that efficiency was predominantly improved in the presence of Ag/Ni clusters compared with the efficiencies of the as-received and single-metal-plated carbons. This indicates that synergetic reactions exist between Ag/Ni and HCl gas, resulting in advanced HCl removal capacity of porous carbons.

Keywords

References

  1. Seinfeld, J. H. Air Pollution: Physical and Chemical Fundamentals; McGraw Hill: New York, 1975
  2. Bansal, R. C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Boca Raton, 2005
  3. Park, S. J.; Jin, S. Y. Carbon 2004, 42, 2113 https://doi.org/10.1016/j.carbon.2004.03.033
  4. Park, S. J.; Jin, S. Y. J. Ind. Eng. Chem. 2004, 11, 395 https://doi.org/10.1021/ie50113a003
  5. Kim, C. M. Bull. Korean Chem. Soc. 2006, 27, 2037 https://doi.org/10.5012/bkcs.2006.27.12.2037
  6. Jeong, H. S.; Kim, C. M. Bull. Korean Chem. Soc. 2007, 28, 413 https://doi.org/10.5012/bkcs.2007.28.3.413
  7. Chen, M. L.; Bae, J. S.; Oh, W. C. Bull. Korean Chem. Soc. 2006, 27, 1423 https://doi.org/10.5012/bkcs.2006.27.9.1423
  8. Shemwell, B.; Levendis, Y. A.; Simons, G. A. Chemosphere 2001, 42, 785 https://doi.org/10.1016/S0045-6535(00)00252-6
  9. Mangun, C. L.; Benak, K. R.; Economy, J.; Foster, K. L. Carbon 2001, 39, 1809 https://doi.org/10.1016/S0008-6223(00)00319-5
  10. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 292, 493 https://doi.org/10.1016/j.jcis.2005.05.066
  11. Marsh, H.; Rodríguez-Reinoso, F. Sciences of Carbon Materials; Universidad de Alicante, Alicante, 1997
  12. Patrick, J. W. Porosity in Carbons; Edward Arnold: London, 1995
  13. Kim, B. J.; Park, S. J. Nanotechnology 2006, 17, 4395 https://doi.org/10.1088/0957-4484/17/17/018
  14. Park, S. J.; Kim, B. J. J. Colloid Interface Sci. 2005, 282, 124 https://doi.org/10.1016/j.jcis.2004.08.110
  15. Brunauer, S.; Emmett, P. H.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309 https://doi.org/10.1021/ja01269a023
  16. Lippens, B. C.; de Boer, J. H. J. Catal. 1965, 4, 319 https://doi.org/10.1016/0021-9517(65)90307-6
  17. Gregg, S. J.; Sing, K. S. W. Adsorption, Surface Area and Porosity; Academic Press: New York, 1982
  18. Do, D. D. Adsorption Analysis: Equilibria and Kinetics; Imperial College Press: London, 1998
  19. Kim, B. K.; Ryu, S. K.; Kim, B. J.; Park, S. J. J. Ind. Eng. Chem. 2006, 12, 121

Cited by

  1. Gas Mask Removal Efficiency of CO, HCl, HCN, and SO2 Gas Produced by Fire vol.29, pp.4, 2015, https://doi.org/10.7731/KIFSE.2015.29.4.057
  2. Influence of Nickel Layer on Electromagnetic Interference Shielding Effectiveness of CuS-Polyacrylonitrile Fibers pp.12295949, 2018, https://doi.org/10.1002/bkcs.11615
  3. A Study on Toxic Acidic Vapor Removal Behaviors of Continuously Nanostructured Copper/Nickel-Coated Nanoporous Carbons vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/546720
  4. Removal of Chlorinated Chemicals in H2Feedstock Using Modified Activated Carbon vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/959012
  5. An overview of new oxidation methods for polyacrylonitrile-based carbon fibers vol.16, pp.1, 2008, https://doi.org/10.5714/cl.2015.16.1.011