DOI QR코드

DOI QR Code

DFT Study for Azobenzene Crown Ether p-tert-Butylcalix[4]arene Complexed with Alkali Metal Ion

  • Published : 2008.03.20

Abstract

Stable molecular isomers were calculated for the azobenzene crown ether p-tert-butylcalix[4]arene (1) in the host and their alkali-metal-ion complexes. The structures of two distinct isomers (cis and trans) have been optimized using DFT B3LYP/6-31G(d,p) method. Trans isomer of 1 is found to be 11.69 kcal/mol more stable than cis analogue. For two different kinds of complexation mode, the alkali-metal-cation in the crown-ether moiety (exo) has much better complexation efficiency than in the benzene-rings (endo) pocket for both isomers of 1. Sodium ion has much better complexation efficiency than potassium ion in all kinds of complexation mode with host 1. The Na+ complexation efficiency of the trans-complex (1) in the exo-binding mode is 8.24 kcal/mol better than cis-exo analogue.

Keywords

References

  1. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989
  2. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; Böhmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991
  3. Calixarenes 50th Anniversary: Commemorative Volume; Vicens, J.; Asfari, Z.; Harrowfield, J. M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991
  4. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998
  5. Calixarenes in Action; Mandolini, L.; Ungaro, R., Eds.; World Scientific Publishers Co.: Singapore, 2007
  6. Alfieri, C.; Dradi, E.; Pochini, A.; Ungaro, R.; Andreetti, G. D. J. Chem. Soc., Chem. Commun. 1983, 1075
  7. Ghidini, E.; Ugozzoli, F.; Ungaro, R.; Harkema, S.; El-Fadl, A. A.; Reinhoudt, D. N. J. Am. Chem. Soc. 1990, 112, 6979
  8. Nijenhuis, W. F.; Buitenhuis, E. G.; de Jong, F.; Sudhölter, E. J. R.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 7963 https://doi.org/10.1021/ja00021a023
  9. Cation Binding by Macrocycles; Inoue, Y., Gokel, G. W., Eds.; Marcel Dekker: New York, 1990
  10. Computational Approaches in Supramolecular Chemistry;Wipff, G., Ed.; Kluwar Academic Publishers: Dordrecht, The Netherlands, 1994
  11. King, A. M.; Moore, C. P.; Sandanayake, K. R. A. S.; Sutherland, I. O. J. Chem. Soc., Chem. Commun. 1992, 582
  12. Asfari, Z.; Weiss, J.; Pappalardo, S.; Vicens, J. Pure Appl. Chem. 1993, 65, 585 https://doi.org/10.1351/pac199365030585
  13. Dijkstra, P. J.; Brunink, J.; Bugge, K.-E.; Reinhoudt, D. N.; Harkema, S.; Ungaro, R.; Ugozzoli, F.; Ghidini, E. J. Am. Chem. Soc. 1989, 111, 7567 https://doi.org/10.1021/ja00201a045
  14. Reinhoudt, D. N.; Dijkstra, P. J.; in't Veld, P. J. A.; Bugge, K.-E.; Harkema, S.; Ungaro, R.; Ghidini, E. J. Am. Chem. Soc. 1987, 109, 4761 https://doi.org/10.1021/ja00249a072
  15. Van Loon, J.-D.; Arduini, A.; Verboom, W.; Ungaro, R.; van Hummel, G. J.; Harkema, S.; Reinhoudt, D. N. Tetrahedron Lett. 1989, 30, 2681 https://doi.org/10.1016/S0040-4039(00)99097-X
  16. Bernardino, R. J.; Cabral, C. Supramol. Chem. 2002, 14, 57 https://doi.org/10.1080/10610270290006574
  17. Balzani, V.; Scandola, F. Supramolecular Photochemistry; Ellis Horwood: New York, 1991; pp 199-215
  18. Kaim, W.; Schwederski, B. Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life; John Wiley & Sons: New York, 1994; pp 281-284
  19. Pipoosananakaton, B.; Sukwattanasinitt, M.; Jaiboon, N.; Chaichit, N.; Tuntulani, T. Tetrahedron Lett. 2000, 41, 9095 https://doi.org/10.1016/S0040-4039(00)01550-1
  20. Tan, L. V.; Quang, D. T.; Lee, M. H.; Kim, T. H.; Kim, H.; Kim, J. S. Bull. Korean Chem. Soc. 2007, 28, 791 https://doi.org/10.5012/bkcs.2007.28.5.791
  21. Jeon, Y.-M.; Lim, T.-H.; Kim, J.-G.; Kim, J.-S.; Gong, M.-S. Bull. Korean Chem. Soc. 2007, 28, 816 https://doi.org/10.5012/bkcs.2007.28.5.816
  22. Choe, J.-I.; Oh, D.-S. Bull. Korean Chem. Soc. 2004, 25, 847 https://doi.org/10.5012/bkcs.2004.25.6.847
  23. Choe, J.-I.; Chang, S.-K.; Lee, S.; Nanbu, S. J. Mol. Struct.(Theochem) 2005, 722, 117 https://doi.org/10.1016/j.theochem.2004.11.052
  24. Choe, J.-I. Bull. Korean Chem. Soc. 2007, 28, 235 https://doi.org/10.5012/bkcs.2007.28.2.235
  25. Choe, J.-I. Bull. Korean Chem. Soc. 2007, 28, 2310 https://doi.org/10.5012/bkcs.2007.28.12.2310
  26. HyperChem Release 7.5; Hypercube, Inc.: Waterloo, Ontario, Canada, 2002
  27. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465 https://doi.org/10.1007/BF02705436
  28. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A. Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.11.3; Gaussian, Inc.: Pittsburgh, PA, 1998
  29. Chem3D, Version 7.0; Cambridge Soft: Cambridge, MA, U.S.A., 2001
  30. Bernardino, R. J.; Cabral, C. Supramol. Chem. 2002, 14, 57 https://doi.org/10.1080/10610270290006574
  31. Choi, H. S.; Suh, S. B.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. 1998, 95, 12094 https://doi.org/10.1073/pnas.95.21.12094
  32. Marcias, A. T.; Norton, J. E.; Evanseck, J. D. J. Am. Chem. Soc. 2003, 125, 2351 https://doi.org/10.1021/ja0285971
  33. Nicholas, J. B.; Hay, B. P. J. Phys. Chem. A 1999, 103, 9815 https://doi.org/10.1021/jp990570p
  34. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Phys. Rev. 2000, 100, 4145
  35. Kim, D.; Hu, S.; Tarakeshwar, P.; Kim, K. S.; Lisy, J. M. J. Phys. Chem. A 2003, 107, 1228 https://doi.org/10.1021/jp0224214
  36. Lee, J. Y.; Lee, S. J.; Choi, H. S.; Cho, S. J.; Kim, K. S.; Ha, T. K. Chem. Phys. Lett. 1995, 232, 67 https://doi.org/10.1016/0009-2614(94)01330-X
  37. Kim, K. S.; Lee, J. Y.; Lee, S. J.; Ha, T. K.; Kim, D. H. J. Am. Chem. Soc. 1994, 116, 7399 https://doi.org/10.1021/ja00095a050
  38. Hay, P. B.; Nicholas, J. B.; Feller, D. J. Am. Chem. Soc. 2000, 122, 10083 https://doi.org/10.1021/ja9937066
  39. Choe, H. S.; Kim, D.; Tarakeshwar, P.; Suh, S. B.; Kim, K. S. J. Org. Chem. 2002, 67, 1848 https://doi.org/10.1021/jo016335w

Cited by

  1. Azo group(s) in selected macrocyclic compounds vol.90, pp.3-4, 2018, https://doi.org/10.1007/s10847-017-0779-4
  2. Macrocycles containing azo groups: recognition, assembly and application vol.92, pp.1-2, 2018, https://doi.org/10.1007/s10847-018-0819-8