DOI QR코드

DOI QR Code

Chemically Modified Submicron Silica Particulate Extractants for Preconcentration of Mercury(II)

  • Published : 2008.10.20

Abstract

A new analytical method using 1-(2-pyridylazo)-2-naphthol modified $SiO_2$ nanoparticles as solid-phase extractant has been developed for the preconcentration of trace amounts of mercury(II) in different water samples. Conditions of the analysis such as preconcentration time, effect of pH, sample volumes, shaking time, elution conditions and effects of interfering ions for the recovery of analyte were investigated. The adsorption capacity of nanometer $SiO_2$-PAN was found to be 260 ${\mu}molg^{-1}$ at optimum pH and the detection limit (3$\sigma$) was 0.48 ${\mu}gL^{-1}$. The extractant showed rapid kinetic sorption. The adsorption equilibrium of mercury(II) on nanometer $SiO_2$-PAN was achieved just in 5 mins. Adsorbed mercury(II) was easily eluted with 5 mL of 6 M hydrochloric acid. The maximum preconcentration factor was 50. The method was applied for the determination of trace amounts of mercury(II) in various water samples and industrial effluents.

Keywords

References

  1. Fang, G. Z.; Tan, J.; Yan, X. P. Anal. Chem. 2005, 77, 1734
  2. Zheng, H.; Chang, X.; Lian, N.; Wang, S.; Cui, Y.; Zhai, Y.; Intern. J. Environ. Anal. Chem. 2006, 86, 431 https://doi.org/10.1080/03067310500248429
  3. Mercier, L.; Pinnavaia, T. J. Environ. Sci. Technol. 1998, 32, 2749 https://doi.org/10.1021/es970622t
  4. Prado, A. G. S.; Arakaki, L. N. H.; Airoldi, C. Green Chem. 2002, 4, 42 https://doi.org/10.1039/b108749e
  5. Prado, A. G. S.; Arakaki, L. N. H.; Airoldi, C. J. Chem. Soc. Dalton Trans. 2001, 2, 206
  6. Liska, J. J. Chromatogr. A 1993, 655, 163 https://doi.org/10.1016/0021-9673(93)83220-M
  7. Martinez, D.; Cugat, M. J.; Borrull, F.; Callul, M. J. Chromatogr. A 2000, 902, 65
  8. Bruzzoniti, M. C.; Sarzanini, C.; Mentassi, E. J. J. Chromatogr. A 2000, 902, 289 https://doi.org/10.1016/S0021-9673(00)00838-4
  9. Cao, G. H.; Fang, Z. L. Fresenius. J. Anal. Chem. 1998, 360, 156 https://doi.org/10.1007/s002160050667
  10. Yang, D.; Chang, X. J.; Liu, Y. W.; Wang, S. Mikrochim. Acta 2004, 147, 219
  11. Chang, X. J.; Wang, Y. M.; Zhao, R. Anal. Bioanal. Chem. 2003, 377, 757 https://doi.org/10.1007/s00216-003-2129-1
  12. Alonso, E. V.; De Torres, A. G.; Pavon, J. M. C. Talanta 2001, 55, 219 https://doi.org/10.1016/S0039-9140(01)00371-X
  13. Henglein, A. Chem. Rev. 1989, 89, 1861 https://doi.org/10.1021/cr00098a010
  14. Xue, Q. J.; Xu, K. Prog. Chem. 2000, 12, 431
  15. Okuyama, K.; Lenggoro, I. W. Chem. Eng. Sci. 2003, 58, 537 https://doi.org/10.1016/S0009-2509(02)00578-X
  16. Das, R. P.; Anand, S. Indian J. Phys. A 2004, 78, 165
  17. Liang, P.; Shi, T. Q. Intern. J. Environ. Anal. Chem. 2004, 84, 315 https://doi.org/10.1080/03067310310001593684
  18. Vassileva, E.; Furuta, N. Fresenius. J. Anal. Chem. 2001, 370, 52 https://doi.org/10.1007/s002160100744
  19. Hosono, E.; Fujihara, S.; Kimura, T.; Imai, H. J. Sol-Gel Sci. Technol. 2004, 29, 71 https://doi.org/10.1023/B:JSST.0000023008.14883.1e
  20. Santos, P. S.; Lima, U. A.; Santos, H. S.; Kiyahara, P. K. An. Acad. Bras. Cienc. 1998, 70, 23
  21. Hiraide, M.; Wasawa, J. I.; Kawaguchi, H. Talanta 1997, 44, 231 https://doi.org/10.1016/S0039-9140(96)02038-3
  22. Sarkar, S.; Cara, P. W.; Mcneff, C. V.; Subramanian, A. J. Chromatogr. B 2003, 790, 143 https://doi.org/10.1016/S1570-0232(03)00126-0
  23. Oshita, K.; Xu, J. S.; Gao, Y. H.; Lee, K. H.; Oshita, M.; Motomizu, S. Bull. Chem. Soc. Jpn 2003, 76, 1555 https://doi.org/10.1246/bcsj.76.1555
  24. Ragai, J.; Selim, S. T. J. Colloid Interface Sci. 1987, 115, 139 https://doi.org/10.1016/0021-9797(87)90018-X
  25. Blois, V.; Fubini, B.; Giamello, E. Mater. Chem. Phys. 1991, 29, 153 https://doi.org/10.1016/0254-0584(91)90012-J
  26. Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62 https://doi.org/10.1016/0021-9797(68)90272-5
  27. Ilverstein, R. M.; Basssler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds, 3rd ed.; Wiley and Sons: New York, 1974; p 115
  28. Stary, J. The Solvent Extraction of Metals Chelates, 1st ed.; Pergamon Press: New York, 1964; p 129
  29. Camel, V. Spectrochim. Acta Part B 2003, 58, 1177 https://doi.org/10.1016/S0584-8547(03)00072-7
  30. Kvitek, R. J.; Evans, J. F.; Care, P. W. Anal. Chim. Acta 1982, 144, 93 https://doi.org/10.1016/S0003-2670(01)95522-9
  31. Maquieira, A.; Elmahadi, H.; Puchades, R. Anal. Chem. 1994, 66, 3632 https://doi.org/10.1021/ac00093a016
  32. Lian, N.; Chang, X. J.; Zhen, H.; Wang, S.; Cui, Y. M.; Zhai, Y. H. Microchim. Acta 2005, 151, 181 https://doi.org/10.1007/s00604-005-0398-4
  33. Miller, J. C.; Miller, J. N. Statistical for Analytical Chemistry; Eillis Horwood: New York, 1988; p 53
  34. Newton, D. F.; Laercio, C.; Rosandre, H. Japan Science and Technology Agency 2005, 21, 1359
  35. Mahmoud, M. E.; Gohar, G. A. Talanta 2000, 51, 77 https://doi.org/10.1016/S0039-9140(99)00249-0
  36. Filho, N. L. D.; Caetano, L. Anal. Sci. 2005, 21, 1359 https://doi.org/10.2116/analsci.21.1359
  37. Newton, D. F.; Laercio, C.; Rosandre, H. J. Braz. Chem. Soc. 2006, 17, 3
  38. Fan, J.; Lou, C.; Peng, C.; Peng, P. J. of Hazardous Materials 2007, 145, 323 https://doi.org/10.1016/j.jhazmat.2006.11.025
  39. Sanchezrojas, F.; De Torres, A. G. J. of Analytical Atomic Spectrometry 1998, 13, 1167 https://doi.org/10.1039/a803472i

Cited by

  1. New Grafted Nanosilica-Based Sorbent for Needle Trap Extraction of Polycyclic Aromatic Hydrocarbons from Water Samples Followed by GC/MS vol.74, pp.5-6, 2011, https://doi.org/10.1007/s10337-011-2094-3
  2. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media) vol.113, pp.10, 2013, https://doi.org/10.1021/cr400086v
  3. Solid phase extractors derived by functionalising sub-micro silica gel with chelating agents and their pH-tunable adsorbing capability towards Pb(II) and Ag(I) vol.170, pp.1-2, 2010, https://doi.org/10.1007/s00604-010-0362-9
  4. Synthesis of magnetite@MIL‐53(Fe)‐NH‐CS2 via postsynthetic modification for extraction/separation of ultra‐trace Hg (II) from some real samples and its subsequent qu vol.35, pp.10, 2008, https://doi.org/10.1002/aoc.6351