단 신

항균성을 가진 새로운 2-propyl-4(3H)-Quinazolinone유도체의 생물학적 평가와 합성

A. M. F. Eissa* ${ }^{*}$, A. M. El-metwally ${ }^{\dagger}$, M. A. EI-hashash ${ }^{\dagger}$, and A. M. F. EI-gohary ${ }^{*}$
Facutho of Science. Banha University Espt
${ }^{\dagger}$ National Onganization for Drug Control And Research, Esppt
${ }^{\text {* Faculty of science, Ain Shams Universith: Esppt }}$
(2008.2.8접수)

Synthesis and Biological Evaluation of Some New2-propyl-4(3H)Quinazolinone Derivatives as Anti-bacteria

A. M. F. Eissa ${ }^{*}$, A. M. El-metwally ${ }^{\dagger}$, M. A. EI-hashash ${ }^{\ddagger}$, and A. M. F. EI-gohary ${ }^{\dagger}$
Faculp of Science, Barfa Universit: Egrpt
${ }^{+}$National Organization for Drug Control And Research. Egpt
${ }^{\ddagger}$ Faculp of science, Ain Shams University: Espot
(Received February 8. 2008)

주제어: Benzoxazin-4(3I)one, Quinazolin-4(3I)one, Anthranil
Keywords: Benzoxazin-4(3H)one, Quinawin-4(3H)one, Andhanil

INTRODUCTION

Quinazolin-4-one is a frequently encountered unit in nature products such as L-vasisinone (1), Chrysongine (2), ${ }^{2}$ and drugs ${ }^{3}$ such as methaqualone(3), ${ }^{+}$ Nolatrexed(4), Chloroqualone(5), ${ }^{5}$ Diproqualone ${ }^{5}(6)$. This molecules which based on the quinazolin-4one ring were reported as interesting pharmacological activities." including anticonvulsant, antibacterial, anti tumor. ${ }^{?}$ analgesic, ${ }^{8}$ antiinflammatory," and anti-diabetic activity. ${ }^{10.11}$ The most common synthetic method to quinazo-lin-4-one is based on acylation of anthranilic acid and ring closure with acelic anhydride to afford corresponding benzoxazinone ${ }^{12}$ which was treated with hydrazine hydrate to give a new 3-aminoquinazolin-4-one derivatives. The current study also involves in vitro antimicrobial screening (neutriet agar) of synthesized quinazolinone derivatives by filter paper disc method. ${ }^{1 ?}$

(1)

(4)

(2)

(5)

(3)

(6)

RESULT AND DISCUSSION

The key starting material 2-propyl-4H- 3,1-ben-zoxazin-4-one (2) has been synthesized via the interaction of butyroyl chloride with anthranilic acid in the presence of pyridine which yielded the corresponding anthranil 1 . Jreatment of anthranil 1 with acetic anhydride afforded the benzoxazinone 2. The structure of anthranil 1 was proved from its microanalytical data and its IR spectra $\left(\mathrm{cm}^{-1}\right)$ which showed strong absorption bands at 1672,1693 ,

3286 and 3422 attributable to $v_{\text {max }}$ of two carbonyl groups, $v \mathrm{NH}$ and $v \mathrm{OH}$ respectively. IR spectrum of the benzoxazinone 2 exhibits strong absorption bands at $1614,1764\left(\mathrm{~cm}^{-1}\right)$ due to $v_{\text {max }}$ of $\mathrm{C}=\mathrm{N}^{\mathrm{N}}$ and $\mathrm{C}=\mathrm{O}$ and lack of any band for NH and / or OH such IR data agreed well with the proposed structure.
The 3-amino-2- propylquinazolin-4(3H)-one (3) resulted via treatment of the Benzoxazinone 2 with hydrazine hydrate in boiling ethanol. The structure of compound 3 was confirmed based on its elemental and spectral analyses, thus IR spectrum of compound 3 reveals strong absorption band at 1596 , 1673,3309 and 3212 attributable to $v_{\text {max }}$ for $\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{O}$ and NH_{2}. EIMS of compound 3 exhibits an ion peak at $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{-}, 203\right),{ }^{1} \mathrm{HNMR}$ spectrum of compound 3 exhibits $\delta(\mathrm{ppm})$ in $\mathrm{CDCl}_{:} \mathrm{l}\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.8\left(\mathrm{~m}, 2 \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}\right), 7.2-8(\mathrm{~m}$, 4 H , aromatic), $9.3\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$.

Stiring of 3-amino-2- propylquinazolin-4(3H)one (3) with aromalic aldehydes namely, 3,4dimethoxy benzaldehyde, 4-N,N-dimethylaminobenzaldehyde and 3,4-methylenedioxy benzaldehyde in ethanol at room temperature afforded 3-(arylidenamino)-2-propylquinazolin-4(3H)-ones (4a-c). The structure of compound 4 were confirmed on the basis of their elemental analyses. Thus IR spectra of compounds ($4 \mathrm{a}-\mathrm{c}$) revealed strong absorption bands at 1600-1612, 1669-1676; attributable to $v \mathrm{C}=\mathrm{N}$ and $v \mathrm{C}=\mathrm{O}$ respectively, and lacked of any band due to NH_{2}. On treatment of compounds $4 \mathrm{a}-\mathrm{c}$ with aromatic aldehyde namely, 3,4-dimethoxy benzaldehyde, 4-N;N-dimethylaminobenzaldehyde and 3,4-methylenedioxy benzaldehyde in refluxing glacial acetic acid the 3-(arylideneamino)-2-(1-phe-nylbut-1-en-2-yl)quinazolin-4(3H)-ones ($5 \mathrm{a}-\mathrm{d}$) were obtained. The structure of compounds 5 were inferred from their IR spectra which exhibit strong absorption bands at the region 1600-1605 and 1670 -1676 attributable to $v_{\max } \mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ respectively. EIMS of compound 5 b exhibited an ion peak at $\mathrm{m} / \mathrm{z}\left(465 ; \mathrm{M}^{-}\right)$.
when compound 3 was allowed to react with carbon disulfide and dimethylsulfate in the presence of sodium hydroxide it yielded methyl-4-oxo-2-propy-lquinazolin-3(4H)-ylcarbamodithioate (6), The struc-
ture of compounds 6 was inferred from elemental analyses, its IR spectrum revealed strong absorption bands at 1450 and 1673 attributable to $v_{\text {max }}$ $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}=\mathrm{O}$ respectively and devoid the band of NH_{2}. The refluxing of compound 6 with secondary amine namely, piperidine, morpholine and piprazine in methanol yielded the corresponding carbothioamide $7 \mathrm{a}-\mathrm{c}$. IR spectra of compounds $7 \mathrm{a}-\mathrm{c}$ exhibit absorption bands in the regions $1450-1470$ and $1658-1670 \mathrm{~cm}^{-1}$ attributable to $\mathrm{u}_{\text {max }}$ of $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}=\mathrm{O}$ respectively, EIMS of compound 7 c gave molecular ion peak at M^{+}(332).

Bromination of compound 3 by treatment with bromine in glacial acetic acid in the presence of sodium acetate yielded 1-(3 -amino-4-oxo-3,4-dihy-droquinazolin-2yl)propyl acetate (8). Formation of compound 8 takes place via bromination of methylene group at position 2 followed by nucleophilic substitution by acetate ion. The structure of compound (8) was proved from its IR spectrum (cmi^{-1}) which showed a strong absorption bands at 1612 , $1645,1725,3214$ and 3324 due to $v_{\text {max }}$ of $\mathrm{C}=\mathrm{N}^{+}$, $\mathrm{C}=\mathrm{O}$ (amide), $\mathrm{C}=\mathrm{O}$ (ester) and NH_{2} respectively. EIMS of 8 exlibited a molecular ion peak at $\left(\mathrm{M}^{+}\right.$, 260). The reaction of ester 8 with phenylhydrazine involves nucleophilic substitution, with a subsequent oxidation process analogous to the formation of osazones ${ }^{14}$ to afford 2-(1-phenylhydrazonopro-pyl)-3-amino-4(3H)-quinazolinone (9). IR Spectrum of compound (9) exhibits strong absorption bands at 1610,1673 and 3200,3300 and 3360 attributable to $v_{\text {max }}$ for $\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}, \mathrm{NH}$ and NH_{2} respectively. On treatment of compound 9 with phosphoric acid under fisher indol synthesis condition yielded 3 -amino-2-(-3-methylindolin-2-yl)quinazo-lin-4(3H)-one (10). IR spectrum of compound 10 revealed absorption bands at 1612,1676 , abroad band $3240-3400$ due to $\mathrm{v}_{\max }$ for $\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}$, and $\mathrm{NH}, \mathrm{NH}_{2}$ respectively. When compound 10 was allowed to react with aromatic aldehydes namely, 3,4-dinethoxy benzaldehyde, 4-N, N -dinethylanninobenzaldehyde and 3,4-methylenedioxy benzaldehyde afforded schiffs bases 3-(arylideneamino)-2-(3-methylinolin-2-yl)quinazolin-4(H)-one (1la-c). the structure of compounds 11 were proved from
their IR spectra which showed absorption at regions 1600-1612, 1665-1675 attribulable to $v_{\text {mix }}$ for $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ and lack the band of NI_{2}. EIMS of 11 b exhibited a molecular ion pcak ($\mathrm{M}^{-}, 438$).
Compound (3) was converted to 3 -(cyelopentyli-dine/hexylidincamino)-2-propylquinazolino-4(3H)one(12a,b) by the reaction with cyclopentanone and cyclohexanone in ethanol, the structure of compound($12 \mathrm{a}, \mathrm{b}$)were proved from their $[\mathrm{R}$ spectra $\left(\mathrm{cm}^{-1}\right)$ which showed absorption bands at $U_{\text {mix }} 1675$.

1610 attributable to $\mathrm{C}^{-}-\mathrm{O}$ and $\mathrm{C}^{-} \mathrm{N}$ and devoid any band for NLI_{2}. EL.MS of 12 a and 12 b showed molecular ion peak at $\mathrm{m} / \mathrm{z}\left(\mathrm{M}^{-} 269\right)$ and $\mathrm{m} / \mathrm{L}\left(\mathrm{M}^{-}\right.$ 283) respectively. When Compounds ($12 \mathrm{a}, \mathrm{b}$) were subnitted to react with thioglycolic acid gave spirocomponds ($13 \mathrm{a}, \mathrm{b}$). IR spectra of compounds ($13 \mathrm{a}, \mathrm{b}$) revealed strong absorption bands at $v_{\text {max }} 16141687$. 1675 and attributable to $\mathrm{C}-\mathrm{N}$ and two carbonyl group respectively. EI. MS of 13b exhibited a molecular ion peak $\mathrm{m} / \angle\left(\mathrm{M}^{-} 357\right)$.

Sohem I

Table 1. Characterization and physical data of synthesized compounds

Comp. No.	$\begin{gathered} \hline \text { M.P. } \\ C^{\circ} \end{gathered}$	solvent	$\begin{gathered} \hline \hline \text { Formula } \\ \text { M.wt. } \end{gathered}$	Analysis\%calc/found	
				C.	H
1	125	benzene	CllH13NO3	63.76	6.28
			207	63.62	6.18
2	59	Petroleun ether 40.60	CllHllNO2	69.84	5.82
			189	69.76	5.92
3	85	Petroleum ether60-80	C. 11 H 13 N 3 O	65.02	6.40
			203	64.89	6.38
4 a	143	Ethanol	C20H21N3O3	68.37	5.98
			351	68.22	5.83
4 b	175	Ethanol	C20H18N4O	72.72	5.45
			330	72.55	5.32
40	145	Ethanol	C19H17N3O3	68.05	5.07
			335	68.12	4.87
5 a	185	Ethanol	C29H29N3O5	69.73	5.81
			499	69.67	5.68
5 b	245	Ethanol	C29H3IN50	73.51	6.66
			465	73.64	6.64
5 c	175	Benzene	C27H21N3O5	69.37	4.49
			467	69.38	4.52
6	160	benzene	C13H15N3OS2	53.24	5.11
			293	52.96	5.20
7 a	191	Methanol	C.17H22N4OS	61.63	6.64
			330	61.65	6.61
7b	145	Methanol	C 16 H 20 N 4 O 2 S	57.83	6.02
			331	57.72	6.19
7 c	180	Methanol	Cl6H21N5OS	64.00	7.00
			331	63.96	6.78
8	165	Benzene	C13H14N3O3	60.00	5.38
			260	$60 . .13$	5.41
9	222	Ethanol	C17Hl7N50	66.44	5.53
			307	66.32	5.58
10	4300	Ethanol	C17Hl3N4O	70.58	4.49
			289	70.45	4.55
$11 a$	255	Ethanol	C26H22N4O3	71.23	5.02
			438	71.40	5.11
11b	280	Methanol	C26H23N50	74.10	5.46
			421	74.24	5.65
11c	247	Ethanol	C25H18N4O3	71.09	4.26
			422	71.32	4.30
12 a	129	Benzene	C.17H21N3O	72.08	7.42
			283	71.98	7.33
12b	125	Benzene	C16H19N3O	71.37	7.06
			269	71.12	7.16
13 a	175	benzene	C18H21N3O2S	62.97	6.12
			343	63.10	5.98
13b	157	benzene	C19H23N3O2S	63.86	6.44
			357	63.78	6.55
14	200	Methanol	C 13 Hl 4 N 3 O 2 Cl	55.91	5.01
			279	56.21	4.97
15	185	Ethanol	C .13 Hl 4 N 4 O	64.46	5.78
			242	64.56	5.74

2008. Fol. 52. Ao. 3

Table (2) : 'B-.V.VIR ol' some synthesized compounds

Strueture formula and compound No.	δ (ppon) carbon atom number
	$\begin{aligned} & 143.3(\mathrm{C}-1), 115.15(\mathrm{C}-2), 129.7(\mathrm{C}-3), 122.4(\mathrm{C}-4), 132.98(\mathrm{C}-5), 121.52(\mathrm{C}-6), 168.8 \\ & (\mathrm{C}-7), 173.0(\mathrm{C}-8), 38.1(\mathrm{C}-9), 19.0(\mathrm{C}-10), 13.2(\mathrm{C}-11) \end{aligned}$
 (3)	$\begin{aligned} & 155.2(\mathrm{C}-1), 161(\mathrm{C}-2), 120(\mathrm{C}-3), 128(\mathrm{C}-4), 127.4(\mathrm{C}-5), 133.5(\mathrm{C}-6), 122(\mathrm{C}-7), 147 \\ & (\mathrm{C}-8), 25.1(\mathrm{C}-9), 14.6(\mathrm{C}-10), 13.9(\mathrm{C}-11) \end{aligned}$

(4c)

$164(\mathrm{C}-1), 160(\mathrm{C}-2), 120.9(\mathrm{C}-3), 128.8(\mathrm{C}-4), 127.4(\mathrm{C}-5), 133.5(\mathrm{C}-6), 122.4(\mathrm{C}-7)$, $147.1(\mathrm{C}-8), 143(\mathrm{C}-9), 127(\mathrm{C}-10), 122(\mathrm{C}-11), 115(\mathrm{C}-12), 151(\mathrm{C}-13), 148(\mathrm{C}-14)$. $114(\mathrm{C}-15), 101(\mathrm{C}-16), 56.1(\mathrm{C}-17), 32(\mathrm{C}-18), 137(\mathrm{C}-19), 127(\mathrm{C}-20), 116(\mathrm{C}-21)$, $126(\mathrm{C}-22), 113(\mathrm{C}-23), 149(\mathrm{C}-24), 15.9(\mathrm{C}-25)$.

(7b)

(15)

Interaction of 3-amino-2-propylquinazolin-4(3H)one (3) with chloroacetyl chloride in pyridine yielded 2 -chloro-N-(4-oxo-2-propylquinazolin- $3(4 \mathrm{H})$-yl)acetamide (14), IR spectrum of compound 14 was revealed strong absorption bands at 1614 , 1672 , 1710 and 3120 attributable to $\mathrm{U}_{\text {mas }} \mathrm{C}=\mathrm{N}$, tow carbo-
nyl groups and NH. Treatment of compound 14 with ammonium acetate in oil bath yiclded 6-pro-pyl-2H-[1,2,4]triazino[2,3-c]quinazolin- $3(4 \mathrm{H})$-one (15). IR spectrum of 15 revealed strong absorption bands at $v_{\text {mat }} 1615,1680$ and 3200 attributable to $\nu_{\text {max }} \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}$, and NH respectively.

BIOLOGICAL PART

All the synthesized compound were screened for anti-bacteria activity using the following method. The neutrient agar was used as media and filter paper disc (0.7 mm diameter). The qunazolinone derivatives were prepared in ethanol at 3 X concentrations ($200 \mu \mathrm{~g} / \mathrm{ml}, 100 \mu \mathrm{~g} / \mathrm{ml}$ and $50 \mu \mathrm{~g} / \mathrm{ml}$) Two bacteria isolates (E.coli and Staph. Aureus) were used as a test organisms The compounds $3,4 \mathrm{a}, 4 \mathrm{~b}$, $5 \mathrm{a}, 5 \mathrm{~b}, 14$ and 15 were highly active against (E . Coli and B.Sublet), whereas $1,4 \mathrm{c}, 5 \mathrm{c}, 7 \mathrm{~b}, 7 \mathrm{c}, 8,9$, $12 \mathrm{a}, 12 \mathrm{~b}, 13 \mathrm{a}$ and 13 b showed moderate activity this microorganism. No significant inhibitory activity of other synthesized derivatives was seen by any against (E. Coli and B.Sublet).

EXPERMINTAL PART

All melting point are uncorrected and determined by the open capillary method using Gallen

Kamp melting point apparabus. Microanalysis were carried out by the Micro Analytical Unit at Cairo University. IR spectra (KBr disk) were recorded on FT/IR-300E Jasco spectrophotometer. HNMR spectra were recorded in CDCl_{3} or $\mathrm{DMSO}-\mathrm{d}_{6}$ solution on a Varian EM $390-90 \mathrm{MHz} .{ }^{15.16}$ Mass spectronetry were recorded were recorded Shomadzu, GCMS (QP-1000EX).

2-butyramidobenzoic acid (1)

A stirred solution of 2 -aminobenzoic acid 13.7 g $(0.1 \mathrm{~mol})$ in dry pyridine (150 ml) was treated drop wise with n-butyroyl chloride $10.5 \mathrm{~g}(0.11 \mathrm{~mol})$ during 10 min . the mixture was stirred at room temperature (3 hours) and poured into a mixture of ice and hydrochloric acid gave crude 2-butyramidobenzoic acid crystallize from the proper solvent. $\mathbb{R}(\mathrm{KBr})$ $\mathrm{cm}^{-1}: 3422(\mathrm{OH}), 3286(\mathrm{NH}), 3055(\mathrm{CH}$ aromatic), 2957, 2927, $2869(\mathrm{CH}$ aliphatic), 1693 ($\mathrm{C}=\mathrm{O}$, Acid), 1672 ($\mathrm{C}=0$, amide)
2-propyl-4H- 3,1-benzoxazin-4-one(2)
A suspension of 2-butyramidobenzoic acid 2.07 g

Table 3. Inhibition zones in mm for the synthesized compound at deferent concentration

Comp. No.	E. Coli			B. Sublet		
	$50 \mu \mathrm{gml}$	$100 \mu \mathrm{gml}$	$200 \mu \mathrm{~g} / \mathrm{ml}$	$50 \mu \mathrm{~g} / \mathrm{ml}$	$100 \mu \mathrm{~g} / \mathrm{ml}$	$200 \mathrm{mg} / \mathrm{ml}$
1	9	12	13	10	11	11
2	12	15	20	15	16	18
3	25	29	33	22	26	29
4 a	28	29	30	14	25	30
4 b	26	30	33	23	28	29
4 c	10	15	16	13	14	14
5 a	28	19	32	22	25	29
5 b	27	28	28	29	29	33
5 c	8	15	16	11	13	15
6						
7 a	-	-	-	.	-	-
7 b	10	16	19	9	11	14
7 c	8	11	12	6	12	13
8	5	11	13	14	15	17
9	11	15	19	15	18	20
10	-	-				-
11 a	-	-	-	-	-	-
11b	.	-	-	-	-	.
11c	-	-	.	.	-	-
12 a	5	11	16	8	12	16
12b	9	11	13	8	13	19
13 a	17	19	19	15	16	18
13b	9	15	19	10	12	16
14	25	27	30	28	29	33
15	26	28	29	28	29	34

(-) Represent no inhibition of growth
2008. Fol. 52 No. 3
(0.01 mol) in 50 ml acetic anhydride was heated under reflux (3hours) and then concentrated. The solid was obtained crystallized from petroleum ether $40-60^{\circ} \mathrm{C}$, giving 2-propyl- $4 \mathrm{H}-3,1$-benzoxazin-4one as a colorless crystals melting point $\left(59^{\circ} \mathrm{C}\right)$. $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3055(\mathrm{CH}$ aromatic), 2965, 2935, $2875(\mathrm{CH}$ aliphatic $), 1764(\mathrm{C}=\mathrm{O}), 1614(\mathrm{C}=\mathrm{N}), 1161$ ($\mathrm{C}-\mathrm{O}$).

3-amino-2- propylquinazolin-4(3H)-one (3)

Compound (2) (1.89 g- 10 mmol$)$ and 5 ml hydrazine hydrate were heated on water bath for $1 /$ 2 hour and then added 50 ml ethanol the mixture was refluxed 3hours, then concentrated and poured on cooled water, the precipitate formed was collected by filtration, dried and crystallization from petroleum ether $60-80^{\circ} \mathrm{C}$ to give (1.5 g) 3-amino-2-propylquinazolin-4(3H)-one $\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3309$, $3212\left(\mathrm{NH}_{2}\right), 3055(\mathrm{CH}$ aromatic), 2965, 2935, 2875 (CH aliphatic), $1673(\mathrm{C}=\mathrm{O}$), $1596(\mathrm{C}=\mathrm{N}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z}$ $203\left[\mathrm{M}^{+}\right], 188,174,158,145,132,104,77$, 'HNMR $\left(\mathrm{CDCl}_{3}\right): 87.2-8\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aromatic), $12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{3}\right)$. $1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.8$ (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), 2.8 (t,2H, $\left.\mathrm{CH}_{2} \mathrm{Q}\right)$.
3-(3,4-dimethoxybenzylideneamino)-2-propy-Iquinazolin-4(3H)-one (4a), 3-(4-(dimethylamino)-benzylideneamino)-2-propylquinazolin-4(3H)-one
(4b) and 3-(benzo[d]|1,3]dioxol-5-ylmethylene-amino)-2-propylquinazolin-4(3H)-one (4c)
a mixture of vetraldehyde ($1.66 \mathrm{~g} ., 10 \mathrm{mmol}$) or $4-N, N$-dimethylaminobenz aldehyde $(1.49 \mathrm{~g}$., 10 mmol) or piperonal ($1.5 \mathrm{~g} ., 10 \mathrm{mmol}$) and compound $3(2.03 \mathrm{~g}$., 10 mmol) in 50 ml ethanol was stirred for 3 hr . the obtained solid was filtered off and recrystalization from the proper solvent to give $4 \mathrm{a}, 4 \mathrm{~b}$ or 4 c .
3-(3,4-dimethoxybenzylideneamino)-2-propy-Iquinazolin-4(3H)-one (4a).

IR(KBr) $\mathrm{cm}^{-1}: 3076(\mathrm{CH}$ aromatic), 2962, 2919, $2870(\mathrm{CH}$ aliphatic), $1673(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / \mathrm{z} 351\left[\mathrm{M}^{+}\right], 320,289,192,179,97$; 'HNMR $\left(\mathrm{CDCl}_{3}\right)$: $87.7-8.4(\mathrm{~m}, 7 \mathrm{H}$, aromatic), $6(\mathrm{~s}, \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 3.4(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}), 1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.5$ (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $1.3(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}, \mathrm{Q}$).
3-(4-(dimethylamino)benzylideneamino)-2-propylquinazolin-4(3H)-one (4b).
$\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3059(\mathrm{CH}$ aromatic), 2975, 2925, $2875(\mathrm{CH}$ aliphatic), $1675(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / \mathrm{z} 330\left[\mathrm{M}^{+}\right], 315,300,286,273,259,244,216$, 188, 174; ' $\mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): 87.7-8.3$ (m, 8 H , aromatic), $\left.6(\mathrm{~s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}), 3.3\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right)_{2}\right), \mathrm{l}(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{3}$) 1.9 (sextet, 2H, $\mathrm{CH}_{2} \mathrm{Me}$), 2.9 (t, 2H, $\left.\mathrm{CH}_{2} \mathrm{Q}\right)$.

3-(benzo[d][1,3]dioxol-5-ylmethyleneamino)-
2-propylquinazolin-4(3H)-one (4c).
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3076(\mathrm{CH}$ aromatic), 2962, 2919, $2870(\mathrm{CH}$ aliphatic), $1671(\mathrm{C}=\mathrm{O}), 1601(\mathrm{C}=\mathrm{N}), 1255$ (C-O-C); MS: m/z 235[M 254,$145 ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.2-8.1(\mathrm{~m}, 7 \mathrm{H}$, aromatic), $6.1(\mathrm{~s}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH} 2-\mathrm{O}), 6(\mathrm{~s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}) 1(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.8 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $2.8(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Q}\right)$.

3,4-dimethoxybenzylideneamino)-2-(3,4-dime-thoxyphenyl)but-1-en-2-yl) quinazolin-4(3H)-one(5a)

4-(dimethylamino)benzylideneamino)-2-(4-dime-thylamino)phenyl)but-1-en-2-yl) quinazolin-4(3H)one (5b)

1-(benzo[d][1,3]dioxol-5-yl)but-1-ell-2-yl)-3-(benzo[d][1,3]dioxol-5-ylmethylene amino)quinazo-lin-4(3H)-one (5c).

A solution of compound $4 \mathrm{a}(3.51 \mathrm{~g} 10 \mathrm{mmol})$ or 4 b ($3.3 \mathrm{~g} ., 10 \mathrm{mmol}$) or 4 c ($3.35 \mathrm{~g} ., 10 \mathrm{mmol}$) and vetraldehyde ($1.66 \mathrm{~g} ., 10 \mathrm{mmol}$) or 4-N,N-dimethylaminobenz aldehyde (1.49 g . 10 nmol) or piperonal $(1.5 \mathrm{~g} ., 10 \mathrm{mmol})$ respectively in 10 ml glacial acetic acid and the mixtures were refluxed for 12 hours and then allowed to cool and the obtained solids were filtered and recrystallization from proper solvent yielded ($5 \mathrm{a}-\mathrm{c}$).

3,4-dimethoxybenzylideneamino)-2-(3,4-dime-thoxyphenyl)but-1-en-2-yl)quinazolin- $4(3 \mathrm{H})$-one (5 a).
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3076(\mathrm{CH}$ aromatic), 2962, 2919, $2870(\mathrm{CH}$ aliphatic), $1673(\mathrm{C}=\mathrm{O}), 1605(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / \mathrm{z} 499\left[\mathrm{M}^{-}\right], 468,437,406,375,300,225 ;{ }^{1} \mathrm{HNMR}$ (DMSO- d_{6}) : $87.7-8.4(\mathrm{~m}, 7 \mathrm{H}$, aronatic), $6(\mathrm{~s}, \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 5.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}) 3.4\left(\mathrm{~s}, 12 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$, $\mathrm{l}\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right)$.

4-(dimethylamino)benzylideneamino)-2-(4-dime-thylamino)phenyl)but-1-en-2-yl) quinazolin-4(3H)one (5b).
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3059(\mathrm{CH}$ aromatic), 2975, 2925,

2875 (CH aliphatic), $1675(\mathrm{C}=\mathrm{O}$), 1600 ($\mathrm{C}=\mathrm{N}$); MS: $\mathrm{m} / \mathrm{z} 465\left[\mathrm{M}^{-}\right], 421,377,315,303,228 ;{ }^{1} \mathrm{HNMR}$ (DMSO-d d_{6}) : $87.7-8.3(\mathrm{~m}, 8 \mathrm{H}$, aromatic), $6(\mathrm{~s}, \mathrm{H}$, $\mathrm{N}=\mathrm{CH}), 5.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 3.3\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.2\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right)$.

1-(benzo|d][1,3|dioxol-5-yl)but-1-en-2-yl)-3-(benzo[d||1,3]dioxo-5-ylmethylene amino)quinazo-lin-4(3H)-one ($\mathbf{5 c}$).

IR(KBr) cm ${ }^{-1}: 3076$ (CH aromatic), 2962, 2919, 2870 (CH aliphatic), $1671(\mathrm{C}=\mathrm{O}), 1601(\mathrm{C}=\mathrm{N}), 1255$ (C-O-C); MS: m/z 467[M $\left.{ }^{+}\right], 421,375,300$, 225,210, 196; 'HNMR (DMSO-d ${ }^{\prime}$) : $87.2-8.1$ (m, 7 H , aromatic), $6(\mathrm{~s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}), 5.8(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), 4(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{O}-\mathrm{CH}-\mathrm{O}), \mathrm{l}\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.2(\mathrm{q}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$)
methyl 4-oxo-2-propylquinazolin-3(4H)-ylcarbamodithioate (6)

A solution of 3 -aminoquinazolinone 3 (4.06 g ., 0.02 mol) in dimethyl sulphoxide (10 ml) was stired vigorously. then added carbon disulphide (1.6 ml) and aqueous sodium hydroxide 1.2 ml (20 mol solution) dropwise during 30 min with stirting . Dimethyl sulphate (0.02 mol) was added gradually keeping the reaction mixture stirting in freezing mixture for 2 hr . The solid obtained was filtered, washed with water, dried and recrystallized from proper solvent gave (6). $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3250(\mathrm{NH})$, $3066(\mathrm{CH}$ aromatic), 2979, 2906, 2867 (CH aliphatic), $1673(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}), 1450(\mathrm{C}=\mathrm{S})$; MS: $\mathrm{m} / \mathrm{z} 293\left[\mathrm{M}^{+}\right], 278,246,214,202,187,172,152$, 142; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{5}\right): \delta 11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.4-8(\mathrm{~m}$, 4 H , aromatic), $2.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.9$ (sextet, $2 \mathrm{H}, \mathrm{CH}, \mathrm{Me}$), 2.8 (t, $2 \mathrm{H}, \mathrm{CH}, \mathrm{Q}$).

N -(4-oxo-2-propylquinazolin-3(4H)-yl)piperi-dine-4-carbothioamide (7a)

N-(4-oxo-2-propylquinazolin-3(4H)-yl)mor-pholine-4-carbothioamide (7b)
N -(4-oxo-2-propylquinazolin-3(4H)-yl)pipera-zine-4-carbothioamide (7c)
A mixture of ($2.93 \mathrm{~g}, 0.01 \mathrm{~mol}$) and of piperidine or morpholine or piperazine (10 ml) was refluxed for 3 hr . the produced mixture was cooled triturated with methanol and the solid obtained was filtered off and re crystallization from proper solvent yielded (7a-c).

N -(4-oxo-2-propylquinazolin-3(4H)-yl)piperi-dine-4-carbothioamide (7a)
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3225(\mathrm{NH}), 3045(\mathrm{CH}$ aromatic), $2963,2900,2862$ (CH aliphatic), $2270(\mathrm{C}=\mathrm{S})$, $1645(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}) ; \mathrm{MS}: \mathrm{n} / \mathrm{z} 331\left[\mathrm{M}^{+}\right], 330$, $252,220,208,193,162,120 ;{ }^{1} \mathrm{HNMR}$ (DMSO-d d_{6}) : $\delta 10.8(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.2-87.7(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 3.2 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{N}(\mathrm{CH}$) , piperidine), 1.8 (pentet, 6 H , piperidine), $1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 1.8 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), 2.8 ($\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}$).

N-(4-oxo-2-propylquinazolin-3(4H)-yl)mor-pholine-4-carbothioamide (7b)
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cmi}^{-1}: 3225(\mathrm{NH}), 3045$ (CH aromatic), $2963,2900,2862$ (CH aliphatic), $2270(\mathrm{C}=\mathrm{S})$, $1645(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N}), 1110(\mathrm{c}-\mathrm{occ}) ; \mathrm{MS}: \mathrm{n} / \mathrm{z} 331$ [$\left.\mathrm{M}^{+}\right], 330,303,205,186,162,145,120,90.77$; ${ }^{1} \mathrm{H} \wedge \mathrm{MR}$ (DMSO- d_{6}) : $\delta 11(\mathrm{~s}, 1 \mathrm{H}, \underline{\mathrm{HH}}), 7.2-7.7(\mathrm{~m}, 4 \mathrm{H}$, aromatic), 3.8 ($\mathrm{t}, 4 \mathrm{H}, \mathrm{O}\left(\mathrm{CH}, \mathrm{L}_{2}\right.$ morphiline), 3.2 (t, 4 H , $\mathrm{N}\left(\mathrm{CH}_{2}\right)_{2}$ morpholine), $1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.9($ sextet, 2 H , $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 2.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}\right)$.

N-(4-oxo-2-propylquinazolin-3(4H)-yl)pipera-zine-4-carbothioamide (7c)
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3225(\mathrm{NH}), 3045$ (CH aromatic), 2963, 2900, 2862 (CH aliphatic), $2270(\mathrm{C}=\mathrm{S}$), $1645(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / \mathrm{z} 331\left[\mathrm{M}^{+}\right], 330$, $303,205,186,162,145,120,90.77$.

1-(3-amino-4-0x0-3,4-dihydroquinazolin-2-yl)propyl acetate (8)

A nixture of $3(2.03 \mathrm{~g}, 10 \mathrm{mmol})$ and sodium acetate (10 mmol) in glacial acetic acid (20 ml) was added bromine (10 mmol) in glacial acetic acid (10 mll) drop wise at $40-50^{\circ} \mathrm{C}$ the reaction mixture was stirred for 3 hr , and it was then left to stand in refrigerator overnight the crystals were filtered off, washed with water and recrystallization from proper solvent to give (8). $\mathbb{R}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3324,3249\left(\mathrm{NH}_{3}\right)$, $3025(\mathrm{CH}$ aromatic), 2963, 2923, $2849(\mathrm{CH}$ aliphatic), 1725 ($\mathrm{C}=\mathrm{O}$ ester), $1645(\mathrm{C}=0$ quinazolinone), $1612(\mathrm{C}=\mathrm{N}), 1265(\mathrm{C}-\mathrm{O}) ; \mathrm{MS}: \mathrm{n} / \mathrm{z} 260\left[\mathrm{M}^{-}\right], 259$. 244, 200, 184, 169, 155, 141; ${ }^{1} \mathrm{HNMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right): \delta$ $12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.9\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 7.2-7.7(\mathrm{~m}$, 4 H , aromatic), $5.5(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHOCOMe}), 1.2(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.2\left(\mathrm{p}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right)$.
2-(1-phenylhydrazonopropyl)-3-amino-4(3H)quinazolinone (9)

To a solution of $8(2.6 \mathrm{~g}, 0.01 \mathrm{~mol})$ in ethanol $(5 \mathrm{ml})$ was added phenyl hydrazine $1.81 \mathrm{ml}, 2 \mathrm{~g}$, 0.02 mol) the reaction mixture was refluxed for 4 hr . after cooling of mixture, the crystallized product was filtered off, washed with cooled ethanol, dried and recrystallization from proper solvent produced (9). $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3360,3300\left(\mathrm{NH}_{2}\right), 3200$ (NH) 3025 (CH aromatic), 2963, 2923, 2849 (CH aliphatic), 1673 ($\mathrm{C}=\mathrm{O}$), $1610(\mathrm{C}=\mathrm{N})$; MS: m/z 307 [M^{+}], 306, 292, 278, 201, 187, 170, 77, 'HNMR (DMSO- d_{i}) : $\delta 11.3\left(\mathrm{~s}, 2 \mathrm{H}, \underline{\mathbf{H}} \mathbf{H}^{2}\right), 7.2-7.7(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $4.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 2.1\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.2$ (t, $2 \mathrm{H}, \mathrm{CH}_{3}$).
3-amino-2-(3-methylindolin-2-yl)quinazolin-4 (3H)-one (10)

Compound 9 ($3.07 \mathrm{~g} \mathrm{0.1} \mathrm{mol)was} \mathrm{added} \mathrm{to} 85 \%$ phosphoric acid (25 ml) at $180^{\circ} \mathrm{C}$. the reaction mixture was heated for 30 min then cooled and diluted with water 100 ml the solid was filtered and recrystallization from the proper solvent gave (10). IR(KBr) cm^{-1} : $3400-3324$ (abroad NH_{2} and NH), 3060 (CH aromatic), 2940 (CH aliphatic), 1676 (C=O), 1612(C=N); MS: m/z 289 [M$\left.{ }^{-}\right], 288,274$, 258, 144, 114; ${ }^{\text {HNMR (DMSO-d }}$) $: \delta 11.2$ (s, 2H, $\mathrm{NH}_{\mathbf{2}}$), $7.2-7.7(\mathrm{~m}, 9 \mathrm{H}$, aromaticand indole NH), 2.8 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}$).
3-(3,4-dimethoxybenzylideneamino)-2-(3-methy-lindolin- 2 -yl)quinazolin-4(3H)-one (11a), 3-(4-(dimethylamino)benzylideneamino)-2-(3-meth-ylindolin-2-yl)quinazolin-4(3H)-one (11b), 3-(benzo-[d][1,3|dioxol-5-ylmethyleneamino)-2-(3-meth-ylindolin-2-yl)quinazolin-4(3H)-one (11c).

To asolution of $10(2.89 \mathrm{~g}, 0.01 \mathrm{~mol})$ in DMF (20 ml) and vetraldehyde ($1.66 \mathrm{~g} ., 10 \mathrm{mmol}$) or 4 N, N-dimethylaminobenzaldehyde ($1.49 \mathrm{~g}, 10 \mathrm{mmol}$) or piperonal (1.5 g ., 10 mmol) the mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 hr following pouring the reaction mixture in cooled water and recrystallization the solid produced from the proper solvent yielded (1la-c).
3-(3,4-dimethoxybenzylideneamino)-2-(3-methy-lindolin-2-yl)quinazolin-4(3H)-one (11a).
$\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3180(\mathrm{NH}), 3055(\mathrm{CH}$ aromatic), 2967 (CH aliphatic), $1675(\mathrm{C}=0), 1610(\mathrm{C}=\mathrm{N}) ;$ MS: $\mathrm{m} / 2438\left[\mathrm{M}^{+}\right], 437,407,376,361,284,271,257$,

144, 113 ; ${ }^{1}$ HNMR (DMSO- d_{6}) : $\delta 7.2-7.9(\mathrm{~m}, 12 \mathrm{H}$, aromaticand indole NH$), 6(\mathrm{~s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}), 3.8(\mathrm{~s}$, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
3-(4-(dimethylamino)benzylideneamino)-2-(3-methylindolin-2-yl)quinazolin-4(3H)-one (11b).

IR $(\mathrm{KBr}) \mathrm{cm}^{-1}: 3195(\mathrm{NH}), 3065(\mathrm{CH}$ aromatic), $2957(\mathrm{CH}$ aliphatic), $1675(\mathrm{C}=\mathrm{O}), 1607(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / 2421\left[\mathrm{M}^{-}\right], 377,362,349,335,191,144,77$; ${ }^{1}$ HNMR (DMSO-d d_{6}) : $87.2-7.9(\mathrm{~m}, 13 \mathrm{H}$, aromatic and indole NH$), 6(\mathrm{~s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}), 3.2\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-(benzo[d][1,3]dioxol-5-ylmethyleneamino)-2-(3-methylindolin-2-yl)quinazolin-4(3H)-one (11c).
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3193(\mathrm{NH}), 3045(\mathrm{CH}$ aromatic), $2957(\mathrm{CH}$ aliphatic), $1675(\mathrm{C}=\mathrm{O}), 1603(\mathrm{C}=\mathrm{N})$; MS: $\mathrm{m} / \mathrm{z} 422$ [M-], 407, 377, 361, 286, 273, 259, 144, 115 ; ${ }^{1} \mathrm{HNMR}$ (DMSO- d_{6}) : 88.8 ($\mathrm{s}, \mathrm{H}, \mathrm{N}=\mathrm{CH}$), 7.2$7.7(\mathrm{~m}, 12 \mathrm{H}$, aromaticand indole NH$), 6(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.

3-(cyclohexylideneamino)-2-propylquinazolin-4(3H)-one (12a), 3-(cyclopenty lidene amino)-2-propylquinazolin-4(3H)-one (12b).

Cyclohexanone (0.01 mol) or cyclopentanone $(0.01 \mathrm{~mol})$ was added to solution of $3(0.01 \mathrm{~mol})$ in 50 ml ethanol. The reaction mixture was heated under reflux for 3 hr and then poured in cooled water and stirring the mixture for 5 min . the solid that separated was filtered and washed with water and recrystallized from the proper solvent giving (12a,b).

3-(cyclopenty lidene amino)-2-propylquinazo-lin-4(3H)-one (12a).
$\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3035(\mathrm{CH}$ aromatic), 2967, 2906, 2876, 2789 (CH aliphatic), 1675 ($\mathrm{C}=\mathrm{O}$), $1609(\mathrm{C}=\mathrm{N}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z} 283\left[\mathrm{M}^{-}\right], 363,239,180,146$, $120,92,65$.
3-(cyclohexylideneamino)-2-propylquinazolin$4(3 \mathrm{H})$-one (12 b).
$3035(\mathrm{CH}$ aromatic), 2967, 2906, 2876, 2789 $(\mathrm{CH}$ aliphatic $), 1675(\mathrm{C}=\mathrm{O}), 1609(\mathrm{C}=\mathrm{N})$; MS: n / z $\left.269 \mathrm{MM}^{-}\right], 254,240,226,158,144,120,77$.
2-(1-(4-oxo-2-propylquinazolin-3(4H)-ylamino)cyclohexylthio)acetic acid (13a) or 2-(1-(4-ox0-2-propylquinazolin- $\mathbf{3 (4 H)}$-ylamino) cyclopentylthio)acetic acid (13b).

A mixture of compound $12 \mathrm{a}(2.83 \mathrm{~g}, .0 .01 \mathrm{~mol})$ or 12 b ($2.69 \mathrm{~g}, 0.01 \mathrm{~mol}$) and thioglycolic acid (0.01 mol) in benzene (50 ml) were refluxed for 3 hr and the solvent was evaporated under reduced pressure. The residue was crystallization from the proper solvent gave ($13 \mathrm{a}, \mathrm{b}$).
2-(1-(4-oxo-2-propylquinazolin-3(4H)-ylamino)cyclopentylthio)acetic acid (13a).
$\operatorname{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3035$ (CH aromatic), 2967, 2906, 2876, 2789 (CH aliphatic), 1685 ($\mathrm{C}=\mathrm{O}$ thiazole), 1675 ($\mathrm{C}=\mathrm{O}$ Quinazolinone), 1609 ($\mathrm{C}=\mathrm{N}$); MS: m / z $\left.357 \mathrm{MM}^{-}\right], 358,343,269,254,240,226,144,120$; ${ }^{1} \mathrm{HNMR}$ (DMSO-d d_{6}) : $87.2-7.7$ ($\mathrm{m}, 9 \mathrm{H}$, aromatic), 5.8 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$ thiazole ring), 2.1 ($\mathrm{t}, 4 \mathrm{H}$, cyclopentane), 1.8 (pentet, 6 H , cyclopentane) 1.8 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), 2.7 (t, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}$), $\mathrm{l}\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
2-(1-(4-oxo-2-propylquinazolin-3(4H)-ylamino)cyclohexylthio) acetic acid (13b).

IR(KBr) $\mathrm{cm}^{-1}: 3035$ (CH aromatic), 2967, 2906, 2876, 2789 (CH aliphatic), 1687 ($\mathrm{C}=\mathrm{O}$ thiazole), 1675 ($\mathrm{C}=\mathrm{O}$ Quinazolinone), $1609(\mathrm{C}=\mathrm{N})$; MS: m / z $343\left[\mathrm{M}^{+}\right], 328,314,300,269,254,240,226,144$, 120; 'HNMR (DMSO- ${ }_{6}$) : $87.2-7.7(\mathrm{~m}, 9 \mathrm{H}$, aromatic), $5.8\left(2 \mathrm{H}, \mathrm{CH}_{2}\right.$ thiazole ring), $2.1(\mathrm{t}, 4 \mathrm{H}$, cyclopentane), 1.8 (pentet, 4 H , cyclopentane) 1.5 (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $2.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}\right), 1\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2}\right)$.
2-chloro-N-(4-0x0-2-propylquinazolin-3(4H)yl)acetamide (14).

Compound $3(2.03 \mathrm{~g}, 0.01 \mathrm{~mol})$ was dissolved in dry pyridine (25 ml) was stirred at room temperature, chloroacetyl chloride was added drop by drop during 20 min the stirring was continued for 3 hr the produced mixture was poured on ice and HCl , the resulting precipitate was collected and washed with water and recrystallization from the proper solvent gave (14). $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3120(\mathrm{NH}), 3068$ $(\mathrm{CH}$ aromatic), 2967, 2906, 2876, 2789 (CH aliphatic), $1710(\mathrm{C}=\mathrm{O}), 1672(\mathrm{C}=\mathrm{O}$ Quinazolinone $)$, $1610(\mathrm{C}=\mathrm{N}) ; \mathrm{MS}: \mathrm{m} / \mathrm{z} 279\left[\mathrm{M}^{+}\right], 244,230,202,187$, 158; ${ }^{1}$ HNMR (DMSO-d ${ }_{6}$) : $\delta 10.9$ (s, 1H, NH), 7.2$7.7(\mathrm{~m}, 4 \mathrm{H}$, aromatic), $6.6(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}, \mathrm{Cl}), 1(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.8$ (sextet, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}$), $2.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}\right)$.
6-propyl-2H-[1,2,4|triazino(2,3-c|quinazolin-3-(4H)-one (15)

Compound (14) $(2.79,0.01 \mathrm{~mol})$ and ammonium acetate (5 g) was heated in oil bath for 3 hr . The reaction mixture was allowed to cool and treated with water the obtained solid was filtered off and recrystallized from the proper solvent gave (15). $\mathrm{IR}(\mathrm{KBr}) \mathrm{cm}^{-1}: 3200(\mathrm{NH}), 3068(\mathrm{CH}$ aromatic), 2967, 2906, 2876, 2789 (CH aliphatic), $1680(\mathrm{C}=0)$, 1615(C=N); MS: m/z $242\left[\mathrm{M}^{-}\right], 227,213,199,171$, 157, 142; 'HNMR (DMSO-d d_{6}) : $\delta 11.5(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 7.2-7.7 ($\mathrm{m}, 4 \mathrm{H}$, aromatic), $5.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2}\right), 1(\mathrm{t}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), 1.8 (sextet, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Me}\right), 2.8\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Q}\right)$.

REFERENCE

1. Jonhe, S. Prog. Chem. Org. Nat Prod. 1984, 46, 159-229.
2. Eguchi, S.; Suzuki, T.; Okawa, T.; Matsushita, Y.; Yashima, E.; Okamoto, Y. J. Otg. Chem. 1996, 61, 7316.
3. Hohne, S. In: supplements to the $2^{\text {ni }}$ ed of the rodds Chemisty of carbon compounds. MF.; Ansell, (Ed.), Elsevier: Ansterdam, 1995 vol. IV, 223.
4. Kacker, I. K.; Zaheer, S. H. I. Indian Chem. Soc., 1951, 28, 344.
5. Sweetman, S., (Ed), Martindale: we complete drug refevence. London: Pharnacentical press. Electonic version, 2005.
6. Ammargo, W. L. E. Adv: Heterocycl. Chem., 1979, 24, I.
7. Raffa, D.; Diadone G.; Maggio B.; Sclillaci D.; Plescia F. Arch Pham Pham Med. Chem 1999, 33, 317-320.
8. Srivastava, B. M.; Bhalla, V. K.; Shankar, T. N. Arzneim. Forsch. 1993, 43, 595-600.
9. Alagarsany, V.; Thangathirupathy, A.; Mandal. S. C. Indian Pham. Sci. 2006, 68, 108-111.
10. Mayer, J. P.; Lewis, GS.; Curtis, M. J.; Zhang, J. Terrahedron Lett. 1997, 389, 8445.
11. Jiang, J. B.; Hessan, D. P.; Dusak.; Dexter, D. L.; Kag, G J.; Hamel, E. J. Med. Chem. 1990, 33, 1721.
12. Eienne F.; Van Zyl. Fonensic Sci. Imr. 2001, 122, 142149.
13. Bauer, A. W.; Sherris, W. W. M.; Turck, J. C. Am. J. Clin Pathol., 1966, 45, 493.
14. Kiss, A.; Kokosi, J.; Rotter, R.; Hermecz, I. Tetrahedron, 2000, 56, 7987-7994.
15. Kasi, P. S. Spectroscopy of organic compounds. 2nd Edn; New age. International Limited Publisher: New Delhi, 1995.
16. Pretsch, E.; Clerc, Th.; Seibl, J.; Simon, W. Tables of Spectral Data For stmicnue Determittation of organic Compolmds 2nd Edn; Springer-Verlag, 1983.
