DOI QR코드

DOI QR Code

Voltammetric Investigation of Vitamin B_6 at a Glassy Carbon Electrode and Its Application in Determination

  • Wu, Yun-Hua (Key Lab for Biotechnology of National Commission for Nationalities, College of Life Science, The South Central University forNationalities) ;
  • Song, Fa-Jun (Key Lab for Biotechnology of National Commission for Nationalities, College of Life Science, The South Central University forNationalities)
  • Published : 2008.01.20

Abstract

The voltammetic behavior of Vitamin B6 (VB6) was studied at a glassy carbon electrode in phosphate buffers using cyclic, linear sweep and differential pulse voltammetry. The oxidation process was shown to be irreversible over the entire pH range studied (4.0-10.0) and was adsorption controlled. The adsorption amount of VB6 on the glassy carbon electrode was examined by chronocoulometry and the value of n, product of transfer coefficient and number of electrons transferred in the rate determining step, was determined from Tafel plot. VB6 was determined by differential pulse voltammetry and the peak current was found linearly with its concentration in the range of 3 10-7-2 10-4 mol L-1. The detection limit was 1 10-7 mol L-1. The procedure was successfully applied for the assay of VB6 in tablets.

Keywords

References

  1. Portela, J. G.; Costa, A. C. S.; Teixeira, L. S. G. J. Pharm. Biomed. Anal. 2004, 34, 543 https://doi.org/10.1016/S0731-7085(03)00589-2
  2. Nepote, A. J.; Damiani, P. C.; Olivieri, A. C. J. Pharm. Biomed. Anal. 2003, 31, 621 https://doi.org/10.1016/S0731-7085(02)00677-5
  3. Alwarthan, A. A.; Aly, F. A. Talanta 1998, 45, 1131 https://doi.org/10.1016/S0039-9140(97)00223-3
  4. Jimenez, R.; Silva, M.; Perez-Bendito, D. Talanta 1997, 44, 1463 https://doi.org/10.1016/S0039-9140(97)00047-7
  5. Lima, J. L. F. C.; Montenegro, M. C. B. S. M.; Silva, A. M. R. J. Pharm. Biomed. Anal. 1991, 9, 1041 https://doi.org/10.1016/0731-7085(91)80042-8
  6. Bisp, M. R.; Bor, M. V.; Heinsvig, E. M.; Kall, M. A.; Nexo, E. Anal. Biochem. 2002, 305, 82 https://doi.org/10.1006/abio.2002.5638
  7. Kall, M. A. Food. Chem. 2003, 82, 315 https://doi.org/10.1016/S0308-8146(02)00568-X
  8. Hou, W.; Ji, H.; Wang, E. Anal. Chim. Acta 1990, 230, 207 https://doi.org/10.1016/S0003-2670(00)82784-1
  9. Hu, Q.; Zhou, T.; Zhang, L.; Li, H.; Fang, Y. Anal. Chim. Acta 2001, 437, 123 https://doi.org/10.1016/S0003-2670(01)00978-3
  10. Chen, G.; Ding, X.; Cao, Z.; Ye, J. Anal. Chim. Acta 2000, 408, 249 https://doi.org/10.1016/S0003-2670(99)00809-0
  11. Soderhjelm, P.; Lindquist, J. Analyst 1975, 100, 349 https://doi.org/10.1039/an9750000349
  12. Gu, H. Y.; Yu, A. M.; Chen, H. Y. Anal. Lett. 2001, 34, 2361 https://doi.org/10.1081/AL-100107301
  13. Teixeira, M. F. S.; Marino, G.; Dochal, E. R.; Cavalheiro, E. T. G. Anal. Chim. Acta 2004, 508, 79 https://doi.org/10.1016/j.aca.2003.11.046
  14. Qu, W. Y.; Wu, K. B.; Hu, S. S. J. Pharm. Biomed. Anal. 2004, 36, 631 https://doi.org/10.1016/j.jpba.2004.07.016
  15. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980; p 213
  16. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, Inc.: New York, 2001; p 97
  17. Bond, A. M. Modern Polarographic Methods in Analytical Chemistry; Marcel Dekker: New York, 1980; p 27
  18. Anson, F. C. Anal. Chem. 1964, 36, 932 https://doi.org/10.1021/ac60210a068

Cited by

  1. Voltammetric study on interaction of cysteine with type I-collagen in the aqueous medium vol.47, pp.7, 2011, https://doi.org/10.1134/S1023193511070123
  2. Investigation of the electrochemical behavior of some dihydroxybenzoic acids in aqueous solution vol.144, pp.10, 2013, https://doi.org/10.1007/s00706-013-1031-6
  3. Cetyltrimethylammonium micelles enhance the sensitivity of ssDNA-based electrochemical sensor for the determination of pyridoxol vol.6, pp.14, 2014, https://doi.org/10.1039/C4AY00847B
  4. Electrochemical oxidation and adsorption of hematoxylin at glassy carbon electrode in various pH values vol.12, pp.2, 2015, https://doi.org/10.1007/s13738-014-0487-6
  5. Electro-deposition of gold nanostructures on carbon paste electrode: a platform with signal amplification for voltammetric study and determination of pyridoxine (vitamin B6) vol.52, pp.5, 2016, https://doi.org/10.1134/S1023193516050098
  6. Effective and Facile Determination of Vitamin B6 in Human Serum with CuO Nanoparticles/Ionic Liquid Crystal Carbon Based Sensor vol.164, pp.13, 2017, https://doi.org/10.1149/2.1981713jes
  7. Electrochemical Oxidation of Alizarin Red-S on Glassy Carbon Electrode: Mechanistic Study, Surface Adsorption and Preferential Surface Orientation vol.163, pp.7, 2016, https://doi.org/10.1149/2.0781607jes
  8. Recent Advances in Electroanalysis of Vitamins vol.28, pp.9, 2016, https://doi.org/10.1002/elan.201600097
  9. Differential encapsulation of trans-2-[4-(dimethylamino)styryl] benzothiazole in cyclodextrin hosts: Application towards nanotubular suprastructure formation vol.892, pp.1, 2008, https://doi.org/10.1016/j.molstruc.2008.06.015
  10. Electrochemical Study of Pyridoxine (Vitamin B6) in Acetonitrile vol.2, pp.3, 2015, https://doi.org/10.1002/celc.201402340
  11. Spectroelectrochemical Investigation of the Interaction of Adenine with Pyridoxine at Physiological pH vol.2019, pp.None, 2008, https://doi.org/10.1155/2019/6979547
  12. Simultaneous Determination of Caffeine and Pyridoxine in Energy Drinks using Differential Pulse Voltammetry at Glassy Carbon Electrode Modified with Nafion® vol.31, pp.8, 2019, https://doi.org/10.1002/elan.201800646
  13. Structural Features and Operational Characteristics of Steel T91 vol.2020, pp.3, 2008, https://doi.org/10.26565/2312-4334-2020-3-12