DOI QR코드

DOI QR Code

Hydration Effect on the Intrinsic Magnetism of Natural Deoxyribonucleic Acid as Studied by EMR Spectroscopy and SQUID Measurements

  • Kwon, Young-Wan (Department of Chemistry, Korea University) ;
  • Lee, Chang-Hoon (Department of Polymer Science and Engineering, Chosun University) ;
  • Do, Eui-Doo (Department of Chemistry, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Korea University) ;
  • Jin, Jung-Il (Department of Chemistry, Korea University) ;
  • Kang, Jun-Sung (Korea Basic Science Institute-Seoul Branch, Korea University) ;
  • Koh, Eui-Kwan (Korea Basic Science Institute-Seoul Branch, Korea University)
  • Published : 2008.06.20

Abstract

The hydration effect on the intrinsic magnetism of natural salmon double-strand DNA was explored using electron magnetic resonance (EMR) spectroscopy and superconducting quantum interference device (SQUID) magnetic measurements. We learned from this study that the magnetic properties of DNA are roughly classified into two distinct groups depending on their water content: One group is of higher water content in the range of 2.6-24 water molecules per nucleotide (wpn), where all the EMR parameters and SQUID susceptibilities are dominated by spin species experiencing quasi one-dimensional diffusive motion and are independent of the water content. The other group is of lower water content in the range of 1.4-0.5 wpn. In this group, the magnetic properties are most probably dominated by cyclotron motion of spin species along the helical π -way, which is possible when the momentum scattering time (${\tau}_k$) is long enough not only to satisfy the cyclotron resonance condition (${\omega}_c{\tau}_k$ > 1) but also to induce a constructive interference between the neighboring double helices. The same effect is reflected in the S-shaped magnetization-magnetic field strength (M-H) curves superimposed with the linear background obtained by SQUID measurements, which leads to larger susceptibilities at 1000 G when compared with the values at 10,000 G. In particular, we propose that the spin-orbital coupling and Faraday's mutual inductive effect can be utilized to interpret the dimensional crossover of spin motions from quasi 1D in the hydrate state to 3D in the dry state of dsDNA.

Keywords

References

  1. Long-Range Charge Transfer in DNA I; Schuster, G. B., Ed.; Springer: Heidelberg, 2004
  2. Long-Range Charge Transfer in DNA II; Schuster, G. B., Ed.; Springer: Heidelberg, 2004
  3. Charge Transfer in DNA: From Mechanism to Application; Wagenknecht, H.-A., Ed.; Wiley-VCH: Verlag, 2005
  4. Kim, H.; Lee, M.; Sim, E. Bull. Korean Chem. Soc. 2007, 28, 607 https://doi.org/10.5012/bkcs.2007.28.4.607
  5. Watanuki, A.; Ikeda, H.; Yoshida, J.; Ogata, N. Kobunshi Ronbunshu 2006, 63, 419 https://doi.org/10.1295/koron.63.419
  6. Grote, J. G.; Diggs, D. E.; Nelson, R. L.; Zetts, J. S.; Hopkins, F. K.; Ogata, N.; Hagen, J. A.; Heckman, E.; Yaney, P. P.; Stone, M. O.; Dalton, L. R. Mol. Cryst. Liq. Cryst. 2005, 426, 3 https://doi.org/10.1080/15421400590890615
  7. Steckl, A. J. Nat. Photonics 2007, 1, 3 https://doi.org/10.1038/nphoton.2006.56
  8. Lee, J. M.; Choi, J. Y.; Kim, J. M.; Lee, S. Y.; Lee, H.; Kim, S. K.; Cho, T. S. Bull. Korean Chem. Soc. 2007, 28, 965 https://doi.org/10.5012/bkcs.2007.28.6.965
  9. Bliumenfeld, L. A. Biofizika 1959, 4, 515
  10. Shulman, R. G.; Walsh Jr, W. M.; Williams, H. J.; Wright, J. P. Biochem. Biophys. Res. Commun. 1961, 5, 52 https://doi.org/10.1016/0006-291X(61)90079-1
  11. Walsh Jr, W. M.; Shulman, R. G.; Heidenriech, R. D. Nature 1961, 16, 1041
  12. Nakamae, S.; Cazayous, M.; Sacuto, A.; Monod, P.; Bouchiat, H. Phys. Rev. Lett. 2005, 94, 248102 https://doi.org/10.1103/PhysRevLett.94.248102
  13. Mizoguchi, K.; Tanaka, S.; Ogawa, T.; Shiobara, N.; Sakamoto, H. Phys. Rev. B 2005, 72, 033106 https://doi.org/10.1103/PhysRevB.72.033106
  14. Lee, C. H.; Kwon, Y.-W.; Do, E.-D.; Choi, D.-H.; Jin, J.-I.; Oh, D.-K.; Kim, J. Phys. Rev. B 2006, 73, 224417 https://doi.org/10.1103/PhysRevB.73.224417
  15. Mirkin, C. A.; Lestinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382, 607 https://doi.org/10.1038/382607a0
  16. Gazit, E. FEBS J. 2007, 274, 317 https://doi.org/10.1111/j.1742-4658.2006.05605.x
  17. Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez Jr, M. P.; Schultz, P. G. Nature 1996, 382, 609 https://doi.org/10.1038/382609a0
  18. Park, S. Y.; Lee, J.-S.; Georganopoulou, D.; Mirkin, C. A.; Schatz, G. C. J. Phys. Chem. B 2006, 110, 12673 https://doi.org/10.1021/jp062212+
  19. Richter, J. Physica E 2003, 16, 157 https://doi.org/10.1016/S1386-9477(02)00670-7
  20. Gordy, W.; Pruden, B.; Snipes, W. Proc. Natl. Acad. Sci. U.S.A. 1965, 53, 751 https://doi.org/10.1073/pnas.53.4.751
  21. Sheng, P. K.; Bliumenfeld, L. A.; Kalmanson, A. E.; Pasynskii, N. G. Biofizika 1959, 4, 263
  22. Muller, A.; Hotz, G.; Zimmer, K. G. Biochem. Biophys. Res. Commun. 1961, 4, 214 https://doi.org/10.1016/0006-291X(61)90273-X
  23. Blois Jr, M. S.; Maling, J. E.; Kaskovich, L. T. Biophys. J. 1963, 3, 275 https://doi.org/10.1016/S0006-3495(63)86821-6
  24. Mizoguchi, K.; Tanaka, S.; Sakamoto, H. Phys. Rev. Lett. 2006, 96, 089801 https://doi.org/10.1103/PhysRevLett.96.089801
  25. Nakamae, S.; Cazayous, M.; Sacuto, A.; Monod, P.; Bouchiat, H. Phys. Rev. Lett. 2006, 96, 089802 https://doi.org/10.1103/PhysRevLett.96.089802
  26. Franklin, R. E.; Gosling, R. G. Acta Cryst. 1953, 6, 673 https://doi.org/10.1107/S0365110X53001939
  27. O'Brien, F. E. M. J. Sci. Instrum. 1948, 25, 73 https://doi.org/10.1088/0950-7671/25/3/305
  28. Lee, S. L.; Debendetti, P. G.; Errington, J. R.; Pethica, B. A.; Moore, D. J. J. Phys. Chem. B 2004, 108, 3098 https://doi.org/10.1021/jp0311409
  29. Tinkham, M.; Strandberg, M. W. P. Phys. Rev. 1954, 97, 951
  30. Yagi, M.; Takemoto, S.; Sasabe, R. Chem. Lett. 2004, 33, 152 https://doi.org/10.1246/cl.2004.152
  31. von Sonntag, C. Free-radical-Induced DNA Damage and Its Repair: A Chemical Perspective; Springer: Heidelberg, 2006
  32. Shields, H.; Gordy, W. Proc. Natl. Acad. Sci. U.S.A. 1959, 45, 269 https://doi.org/10.1073/pnas.45.2.269
  33. Ehrenberg, A.; Ruppercht, A.; Strom, G. Science 1967, 157, 1317 https://doi.org/10.1126/science.157.3794.1317
  34. Sevilla, M. D.; Becker, D. ESR Studies of Radiation Damage to DNA and Related Biomolecules in Electron Paramagnetic Resonance; Gilbert, B. C., Davies, M. J., Murphy, D. M., Gilbert, B. C., Davies, M. J., McLauchlan, K. A., Eds.; RSC Publishing: 2004; Vol. 19, p 243
  35. Iiyama, T.; Chikira, M.; Oyoshi, T.; Sugiyama, H. J. Biol. Inorg. Chem. 2003, 8, 135 https://doi.org/10.1007/s00775-002-0398-3
  36. Castner, T.; Newell, G. S.; Holton, W. C.; Slichter, C. P. J. Chem. Phys. 1960, 32, 668 https://doi.org/10.1063/1.1730779
  37. Kliava, J. Phys. Stat. Sol. (b) 1986, 134, 411 https://doi.org/10.1002/pssb.2221340202
  38. Nicolau, C. Short-lived Free Radicals in Aqueous Solutions of Nucleic Acid Components in Physico-chemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press (London): London, 1973; Vol. 1, p 143
  39. Herak, J. N. E. p. r. of Irradiated Single Crystals of the Nucleic Acid Constituents in Physico-chemical Properties of Nucleic Acids; Duchesne, J., Ed.; Academic Press (London): London, 1973; Vol. 1, p 197
  40. Cai, Z.; Sevilla, M. D. Studies of Excess Electron and Hole Transfer in DNA at Low Temperatures in Long-Range Transfer in DNA II; Schuster, G. B., Ed.; Springer: Heildelberg, 2004; p 103
  41. Wertz, J. E.; Bolton, J. R. Appendix D Experimental Methods; Spectrometer Performance in Electron Spin Resonance: Elementary Theory and Practical Applications; McGraw-Hill Book Company: New York, 1972; p 450
  42. Kittel, C. In Introduction to Solid State Physics, 6th ed.; John Wiley: New York, 1991; p 413
  43. Warman, J. M.; Haas, M. P. d.; Rupprecht, A. Chem. Phys. Lett. 1996, 249, 319 https://doi.org/10.1016/0009-2614(95)01429-2
  44. Briman, M.; Armitage, N. P.; Helgren, E.; Gruner, G. Nano Lett. 2004, 4, 733 https://doi.org/10.1021/nl049961s
  45. Nechtschein, M. Electron Spin Dynamics in Handbook of Conducting Polymers, 2nd ed.; Skotheim, T., Elsenbaumer, R. L., Reynolds, J. R., Eds.; Marcel Dekker, Inc: New York, 1998; p 141
  46. Endres, R. G.; Cox, D. L.; Singh, R. P. P. Rev. Modern Phys. 2004, 76, 195 https://doi.org/10.1103/RevModPhys.76.195
  47. Kelley, S. O.; Barton, J. K. Science 1999, 283, 375 https://doi.org/10.1126/science.283.5400.375
  48. Nunez, M. E.; Holmquist, G. P.; Barton, J. K. Biochemistry 2001, 40, 12465 https://doi.org/10.1021/bi011560t
  49. Boon, E. M.; Barton, J. K. Curr. Opin. Struct. Biol. 2002, 12, 320 https://doi.org/10.1016/S0959-440X(02)00327-5
  50. Delaney, S.; Barton, J. K. J. Org. Chem. 2003, 68, 6475 https://doi.org/10.1021/jo030095y
  51. Giese, B. Curr. Opin. Chem. Biol. 2002, 6, 612 https://doi.org/10.1016/S1367-5931(02)00364-2
  52. Okamoto, A.; Tanaka, K.; Saito, I. J. Am. Chem. Soc. 2003, 125, 5066 https://doi.org/10.1021/ja0294008
  53. Henderson, P. T.; Jones, D.; Hampikian, G.; Kan, Y. Z.; Schuster, G. B. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8353 https://doi.org/10.1073/pnas.96.15.8353
  54. Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Science 2001, 294, 567 https://doi.org/10.1126/science.1062864
  55. Lewis, F. D.; Liu, X. Y.; Liu, J. Q.; Miller, S. E.; Hayes, R. T.; Wasielewski, M. R. Nature 2000, 406, 51 https://doi.org/10.1038/35017524
  56. Lewis, F. D.; Wu, Y. S.; Zhang, L. G.; Zuo, X. B.; Hayes, R. T.; Wasielewski, M. R. J. Am. Chem. Soc. 2004, 126, 8206 https://doi.org/10.1021/ja048664m
  57. Mizoguchi, K.; Tanaka, S.; Ojima, M.; Sano, S.; Nagatori, M.; Sakamoto, H.; Yonezawa, Y.; Aoki, Y.; Sato, H.; Furukawa, K.; Nakamura, T. J. Phys. Soc. Jpn. 2007, 76, 043801 https://doi.org/10.1143/JPSJ.76.043801
  58. Kahn, O. Molecular Magnetism; VCH: New York, 1993
  59. Kittel, C. In Introduction to Solid State Physics, 6th ed.; John Wiley: New York, 1991; p 423
  60. Levy, L. P.; Reich, D. H.; Pfeiffer, L.; West, K. Physica B 1993, 189, 204 https://doi.org/10.1016/0921-4526(93)90161-X
  61. Kasumov, A. Y.; Kociak, M.; Gueron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchiat, H. Science 2001, 291, 280 https://doi.org/10.1126/science.291.5502.280
  62. Tagami, K.; Tsukada, M.; Wada, Y.; Iwasaki, T.; Nishide, H. J. Chem. Phys. 2003, 119, 7491 https://doi.org/10.1063/1.1606436
  63. Cai, Z. L.; Sevilla, M. D. J. Phys. Chem. B 2000, 104, 6942 https://doi.org/10.1021/jp000956w
  64. Minot, E. D.; Yaish, Y.; Sazonova, V.; McEuen, P. L. Nature 2004, 428, 536 https://doi.org/10.1038/nature02425
  65. Livolant, F.; Leforestier, A. Prog. Polym. Sci. 1996, 21, 1115 https://doi.org/10.1016/S0079-6700(96)00016-0
  66. Smalyukh, I. I.; Zribi, O. V.; Butler, J. C.; Lavrentovich, O. D.; Wong, G. C. L. Phys. Rev. Lett. 2006, 96, 177801 https://doi.org/10.1103/PhysRevLett.96.177801
  67. Lorman, V.; Podgornik, R.; Zeks, B. Phys. Rev. Lett. 2001, 87, 218101 https://doi.org/10.1103/PhysRevLett.87.218101
  68. Manna, F.; Lorman, V.; Podgornik, R.; Zeks, B. Phys. Rev. E 2007, 75, 030901(R) https://doi.org/10.1103/PhysRevE.75.030901
  69. Kornyshev, A. A.; Lee, D. J.; Leikin, S.; Wynveen, A.; Zimmerman, S. B. Phys. Rev. Lett. 2005, 95, 148102 https://doi.org/10.1103/PhysRevLett.95.148102
  70. Mesquita, M. V.; Vasconcellos, A. R.; Luzzi, R.; Mascarenhas, S. Int. J. Quantum. Chem. 2005, 102, 1116 https://doi.org/10.1002/qua.20424
  71. Sension, R. J. Nature 2007, 446, 740 https://doi.org/10.1038/446740a
  72. Lax, B.; Mavroides, J. G. Cyclotron Resonance in Solid State Physics; Seitz, F., Turnbull, D., Eds.; Academic Press: 1960; Vol. 11, p 261
  73. Bagguley, D. M. S.; Stradling, R. A.; Whiting, J. S. S. Proc. R. Soc. Lond. A 1961, 262, 340 https://doi.org/10.1098/rspa.1961.0123
  74. Bagguley, D. M. S.; Stradling, R. A.; Whiting, J. S. S. Proc. R. Soc. Lond. A 1961, 262, 365 https://doi.org/10.1098/rspa.1961.0124
  75. Canali, C.; Jacoboni, C.; Nava, F.; Ottaviani, G.; Alberigi-Quaranta, A. Phys. Rev. B 1975, 12, 2265 https://doi.org/10.1103/PhysRevB.12.2265
  76. Jacoboni, C.; Nava, F.; Canali, C.; Ottaviani, G. Phys. Rev. B 1981, 24, 1014 https://doi.org/10.1103/PhysRevB.24.1014
  77. Santos, H. D. L.; Gray, J. L. IEEE Trans. Electron Devices 1988, 35, 1972 https://doi.org/10.1109/16.7412
  78. Griffiths, D. J. Faraday's Law in Introduction to Electrodynamics, 3rd ed.; Prentice Hall: New Jersey, 1999; p 301

Cited by

  1. Highly fluorescing solid DNA-cationic polyelectrolyte complexes prepared from a natural DNA and a poly(fluorenevinylene-alt-phenylene) bearing quaternary ammonium pendants vol.17, pp.4, 2009, https://doi.org/10.1007/BF03218687
  2. Optical, electro-optic and optoelectronic properties of natural and chemically modified DNAs vol.44, pp.12, 2012, https://doi.org/10.1038/pj.2012.165
  3. Comparison of magnetic properties of DNA-cetyltrimethyl ammonium complex with those of natural DNA vol.55, pp.5, 2012, https://doi.org/10.1007/s11426-012-4507-z
  4. Materials science of DNA vol.19, pp.10, 2008, https://doi.org/10.1039/b808030e
  5. High‐Temperature Ferromagnetism of a Discotic Liquid Crystal Dilutely Intercalated with Iron(III) Phthalocyanine vol.22, pp.39, 2008, https://doi.org/10.1002/adma.201001288