화학반응식 균형과 안정성을 위한 새로운 유사 역행렬법

Ice B. Risteski*
(2008. 2. 12 접수)

A New Pseudoinverse Matrix Method For Balancing
 Chemical Equations And Their Stability

Ice B. Risteski*
2 Milepost Place $\$ 606$. Toronto. Ontario. Conada M4H $1 \mathrm{C7}$
E-mail: ice(âscientist.com
(Received Febnary 12, 2008)

Balancing the equation of the reaction is a matter of mathematics onll:: M. I. ten Hoor, I. Chem. Educ. 74 (1997), 1367

Abstract

요 약. 이 논문에 화학반응식 균형을 맞추기 위한 새로운 유사 역행렬법이 기술되었다. 여기에 제공된 방법은 Moore-Penrose 유사 역행렬을 사뵹한 Diophantin 행렬식의 해에 기초를 둔다. 방법은 전형적인 여러 화학반응식에 시 험적용되었고 곡넓은 균형연구에서 모든 반응식에 매우 성공적이었다. 이 방법은 아무 제한없이 성공걱으로 적용되고. 또한 새로운 화학반응식의 타당성에 대한 검증력도 있고, 만일 새식이 타당하다면 화학식 균형을 이룰 것이다. 여기서 다루어진 화학반응식들은 소수산화수를 지닌 원자를 포함하고 있다. 또한, 화학반응식의 환장된 행렬희 안정성에 대한 화학반응식의 안정성의 필요충분조건을 이 연구에 소개하였다. 주제어: 유사 역행렬, 화학반응식 균형 맞추기, 안정섬

Abstract

In this work is given a new pseudoniverse matrix method for balancing chemical equations. Here offered method is founded on virtue of the solution of a Diophantine matix equation by using of a Moore-Penrose pseudoinverse matrix. The method has been tested on several typical chemical equations and found to be very successful for the all equations in our extensive balancing research. This method, which works successfully without any limitations, also has the capability to determine the feasibility of a new chemical reaction, and if it is feasible, then it will balance the equation. Chemical equations treated here possess atoms with fractional oxidation numbers. Also, in the present work are introduced necessary and sufficient criteria for stability of chemical equations over stability of their extended matrices.

Keywords: Pseudoinverse Matrix, Balancing Chemical Equations. Stability

1. INTRODLCTION

Chemical equations are the most exploited part of theoretical as well as industrial chemistry. Every chemistry instructor doubtless has his favorite technique of balancing equations. Chemical equations are commonly written for two purposes: to show the probable reaction products, and to show the
quantities of materials that enter into reaction. It is fortunate indeed that an extensive and comprehensive knowledge of sub-atomic phenomena is not essential in the balancing of equations. Every student, which has general chemistry as an obligatory subject, is bound to come across balancing chemical equations. It is highly inportant for chemistry student to be able to write and balance chemical
equations readily and accurately. Actually, balancing chemical equations provides an excellent demonstrative and pedagogical example of interconnection between stoichiometrical principles and linear algebra.

A chemical equation is a symbolic representation of a chemical reaction. The substances initially involved in a chemical reaction are called reactants, but the newly formed substances are called the products. The products are new substances with properties that are different from those of reactants. Classically, chemical reactions encompass changes that strictly involve the motion of electrons in the forming and breaking of chenical bonds, although the general concept of a chemical reaction, in particular the notion of a chemical equation, is applicable to transformations of elenentary particles.
A chemical equation is not only the shorthand writing of the chemist, but it should be a mental picture of an actual reaction. To the observant investigator, the equation should immediately remind him as to the physical nature and properties of the reactants, viz., color, state, etc., as well as the chemical result and its physical nature. Thus, a great deal of sigrificance should be attached to the writing of chemical equations. The part of chemical mathematics called Stoichiometry deals with the weight relations determined by chemical equations and formulas. According to it, the balancing of chemical equations is important in this area. Since a chemical reaction, when it is feasible, is a natural process, the consequent equation is always consistent. Therefore, we must have a nontrivial solution and we should be able to obtain it assuming its existence. Such an assumption is absolutely valid and does not introduce any error. If the reaction is infeasible, then the only solution is a trivial one, i. e, the all coefficients are equal to zero.

2. HISTORICAL SURVEY

During the past years, numerous articles have appeared in scientific literature relative to the balancing of chemical equations. In this section is made a short survey of selected articles for balanc-
ing chemical equations. The selection criteria for references were intentionally wide, in order to include a large variety of topics. Balancing chemical equations in the scientific literature is considered from four points of view: mathematical, computational, chemical and pedagogical.

Now, shortly we will describe these glances.

- Jones for the first time in mathematics proposed the general problem for balancing chemical equations. ${ }^{\text {I }}$ Krishnamurthy in his article ${ }^{2}$ gave an algebraic approach for balancing chemical equations founded on virue of a generalized matrix inverse. Little bit late Das ${ }^{3}$ offered a simple scholarly technique, which was discussed in. ${ }^{1.2}$ One other technique for balancing chemical equation over an integer programming approach is given in, ${ }^{6}$ while in ${ }^{7}$ by using of a reflexive generalized inverse matrix is solved the general problen土 of balancing chemical equations given in. ${ }^{1}$ The newest mathenatical results for balancing chemical equations and their stability over a nonsingular matrix method are obtained in. ${ }^{8}$ Actually, to date in mathematics and chemistry there are only three strictly formalized consistent mathematical methods for balancing chemical equations, particularly they are the methods given in ${ }^{7,8}$ and right now presented method in this work, while other so called methods in chemical sense have a limited usage, and they are useful only for particular cases, especially for balancing chemical equations which possess atoms with integer oxidation numbers.
- In chemistry there are many published articles, ${ }^{5,29}$ which consider the use of computers for balancing chemical equations. All of these computational methods use some commercial softer packet.
- University textbooks of general chemistry generally support the ion-electron technique as basic procedure for balancing chemical equation, because it makes the best use of fundamental chemical principles. Also, sone authors advocated other techniques, which involve less algebraic manipulation that may deserve attention - particularly in classes of chemistry and chemical engineering majors. ${ }^{30-56}$

Several simple chemical equations are solved by elementary algebraic techniques in. ${ }^{15757-62}$ Bottom-
ley published the earliest article that makes use of the linear algebra method. ${ }^{63}$ A set of various modifications, which implement this approach, is documented in. ${ }^{31,44,4,64.66}$ The case when the chemical equation has no unique solution received considerable attention in the education articles. ${ }^{18.67-7 y}$ The equation represents two or more independently occurring reactions can be combined in varying stoichiometric ratios. ${ }^{8381}$ Fixed ratios of reagents, observed experimentally in particular cases, are equivalent to a restriction on the coefficients that make a unique solution. ${ }^{18}$
It is necessary to stress out that balancing chemical equations by inspection is equivalent to using the algebraic method or a computerized matrix algebra approach. ${ }^{8 ., 85}$ The valence change method $d^{30.3+106}$ and the ion-electron method ${ }^{85 \cdot 88,92,10,107.113}$ are also simple algebraic inspection techniques, subjected to exactly the same controls and limitations as the algebraic and matrix methods. Here it is good to emphasis that first Karslake in ${ }^{114}$ considered balancing of ionic chemical equations. Actually, the technique suggested by Garcia ${ }^{11}$ can reduces the number of algebraic steps for ion-electron method. Above both mentioned methods - the valence change method and ion-electron method begin by establishing the relative proportions of reagents taking part in separate oxidation and reduction components of a redox reaction. Then, each technique uses a lowest common multiplier to enforce a principle of conservancy - for instance, conservation of oxidation number change in the case of the oxidation number method. Johnson in his article ${ }^{116}$ defined the equivalent term oxidafion stage change on this subject.

Stout in ${ }^{117}$ presented three redox reactions as puzzles. Each one can be shown as simple redox system, which may easily be balanced using here offered method. After this article was published, the followed other debatable articles with critical accent. ${ }^{118.1^{13}}$

Balancing chemical equations through the pedagogical point of view is given in the articles. ${ }^{11212+133}$ This approach is very interesting for the education of chemical research. A check of the hypothesis
that formal reasoning and a sufficiently large mental capacity are required to balance more conmplex many-step equations is made over a test to deternine level of intellectual development, mental capacity, and degree of field dependence/field independence of the students. ${ }^{15+4}$

3. PRELIMINARIES

Now we will introduce some well known results from the matrix algebra. Throughout, the set of $m \times n$ matrices over a field will be denoted by $\mathbb{R}^{m n}$.

Definition 3. 1. The Moore-Penose pseudoinverse A^{-}of a matrix $A \in \mathbb{R}^{n^{\prime} n}$ is the wique matrix satisfing the following criteria: $\boldsymbol{A A}^{-} \boldsymbol{A}=\boldsymbol{A}, \boldsymbol{A}^{+} \boldsymbol{A} \boldsymbol{A}^{-}$ $=\boldsymbol{A}^{-},\left(\boldsymbol{A A}^{-}\right)^{\mathrm{T}}=\boldsymbol{A} \boldsymbol{A}^{+},\left(\boldsymbol{A}^{+} \boldsymbol{A}\right)^{\mathrm{T}}=\boldsymbol{A}^{-} \boldsymbol{A}$.
Suppose the matrix \boldsymbol{A} has full rank, then
$\boldsymbol{A}=\left[a_{i f}\right]_{n \times \theta}$ and $\operatorname{rank} \boldsymbol{A}=n \Rightarrow \boldsymbol{A}^{-}=\boldsymbol{A}^{-1}$,
$\boldsymbol{A}=\left[a_{i] m, n}(m>n)\right.$ and $\operatorname{rank} \boldsymbol{A}=n \Rightarrow \boldsymbol{A}^{-}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}}$,
$\boldsymbol{A}=\left[a_{i / m \times n}(m<n)\right.$ and rank $\boldsymbol{A}=m \Rightarrow \boldsymbol{A}^{+}=\boldsymbol{A}^{\mathrm{T}}\left(\mathbf{A A}^{\mathrm{T}}\right)^{-1}$.
If the matrix \boldsymbol{A} does not have full rank, i.e, \boldsymbol{A} is an $m \times n$ matrix and rank $\boldsymbol{A}=r<\min (m, n)$, then pseudoinverse \boldsymbol{A}^{+}can be constructed from the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\mathrm{T}}$ by $\boldsymbol{A}^{-}=\boldsymbol{V}^{-} \boldsymbol{U}^{\mathrm{T}}$.

Also the Moore-Penrose pseudoinverse \boldsymbol{A}^{+}of a matrix A, we can derive on this way. There do always exist two matrices $C=\left[c_{i 1}\right]_{m \times n}$ and $D=\left[d_{i j}\right]_{\times n}$ of rank r, such that $A=C D$. Using these matrices it holds that $\boldsymbol{A}^{-}=\boldsymbol{D}^{\mathrm{T}}\left(\boldsymbol{D} \boldsymbol{D}^{\mathrm{T}}\right)^{-1}\left(\boldsymbol{C}^{\mathrm{T}} \boldsymbol{C}\right)^{-1} \boldsymbol{C}^{\mathrm{T}}$.
Pseudoinverse natrix A^{-}of a matrix A was independently defined by Moore ${ }^{135}$ and Penrose ${ }^{1 ; 6}$. If the matrix \boldsymbol{A}^{-}satisfies first two equalities of definition 3. 1, then it is called a reflexive generalized inverse of \boldsymbol{A}, denoted by \boldsymbol{A}. This matrix is not unique.

Definition 3. 2. The characteristic equation of an $n \times n$ matrix \boldsymbol{A} is the equation in one variable $\hat{\lambda}$

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3.1}
\end{equation*}
$$

where $\operatorname{det}(\cdot)$ denotes a determinam and I is an $n \times n$ idenity matrix.
Definition 3. 3. The polnomial

$$
\begin{equation*}
a_{n} \hat{\lambda}^{\mu}+a_{n-1} \lambda^{n \cdot 1}+\cdots+a_{1} \hat{\lambda}+a_{13}=0 \tag{3.2}
\end{equation*}
$$

which results from evaluating the determinant (3.1)
is the characteristic polynomial of the matrix A.
The above polynomial of degree $n \geq 1$ with real coeflieients $a_{i}(0 \leq i \leq n)$, where $a_{n} \neq 0$, by the fundamental theorem of algebra has n (not necessarily distinct) roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{14}$
Definition 3. 4. The roots of the characteristic polynomial (3.2) are precisely the eigenohues of the matrix \boldsymbol{A}.

Definition 3. 5. The reaction matrix has the fol-
 $(r<m)$ and $\boldsymbol{B}=\left[b_{i j m}\right]_{m}(s<m)$.
Definition 3. 6. An extended matrix

$$
{\mathrm{I} x t A_{\mid}^{1}} \boldsymbol{B}=\left[\begin{array}{ll}
A & B \tag{3.3}\\
O & I
\end{array}\right]
$$

of $(1+s) \times(r+s)$ dimension, is singutur if $\operatorname{dct}\left(1 \times x t A_{1} B\right)=$ 0 . where $\boldsymbol{A}=\left\lceil a_{i, ~}\right\rceil_{w r,}(r<m), \boldsymbol{B}=\left\lceil b_{i j}\right\rceil_{m ; s}(s<m), \boldsymbol{I}$ is the identity matrix of $(r-s-m) \times(r-s-m)$ dimension and \mathbf{O} is a zero matrix of $(r \mid s-m) \times m$ dimension. In^{8} is treated the non-singular case.
Let $\sigma(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B})-\left\{\lambda_{,}, 1 \leq i \leq k\right\}$ be the spectrum of Ext $\boldsymbol{A} \mid \boldsymbol{B}$. Let $|\cdot|$ denotes a vector norm in $\mathbb{R}^{\wedge}{ }^{k}$.
Delinition 3. 7. The Lozinskii measzfe μ on $\mathbb{R}^{\prime \prime}$ with respect to $|\cdot|$ is defined by

$$
\begin{equation*}
\mu\left(\mid \times x t \mathcal{A}_{1} B\right)=\lim _{p \rightarrow i}\left(|I+\rho| \times \operatorname{t} \boldsymbol{A}_{1}^{1} \boldsymbol{B} \mid-1\right) / \rho . \tag{3.4}
\end{equation*}
$$

Definition 3. 8. The Lozinskir measwes of $\operatorname{IxtA} \mid B$ $=\left[a_{i j}\right]_{, \cdots,}$ with respect to the three conmon norms

$$
\begin{gather*}
|x|,-\sup _{i}\left|x_{i}\right|, \\
|x|-\sum_{i}\left|x_{i}\right|_{1} \\
\left.|x|_{2}-\left(\sum_{i}\left|x_{i}\right|^{-}\right)\right)^{1: 2} \tag{3.5}
\end{gather*}
$$

$$
\begin{aligned}
& \text { afe } \\
& \mu_{.}\left(\operatorname{ExMA}_{i} B\right)=\sup \left(\mathrm{a}_{; i}+\sum_{k k i} \mid \mathrm{a}_{i k}\right), \\
& \mu_{1}(\operatorname{ExiA} \mid \boldsymbol{B})-\sup _{k}\left(\mathrm{a}_{k j}+\sum_{i ; k}\left|\mathrm{a}_{k}\right|\right),
\end{aligned}
$$

where

$$
\operatorname{stab}(\operatorname{Exv} ; \boldsymbol{B})=\max \{\lambda, \lambda \in \sigma(\operatorname{Ext} \boldsymbol{A} ; \boldsymbol{B})\}
$$

is the stability modrhts of Ext $A_{1}^{1} B$ and T denoting manspose.

Definition 3. 9. The extended marix $\operatorname{Ext} A \mid B$ is stable if $\operatorname{stab}(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B})<0$.

4. MAIN RESULTS

In this section we will give a completely new method for balancing and stability of chemical equations. Given analysis is done for arbitrary chemical cquation presented in its general form.

Proposition 4. 1. Any chemical equation may be presented in this form

$$
\begin{equation*}
\sum_{i} x_{j} \prod_{j l}^{n} \psi_{d=}^{i}=\sum_{i=1}^{j} y_{l} \prod_{1}^{w} \Omega_{b}^{i} \tag{4.1}
\end{equation*}
$$

where $x_{j}(1 \leq j \leq r)$ and $y_{i}(1 \leq j \leq s)$ are unknown rational coefficients. Ψ^{i} and $\Omega^{i}(1 \leq i \leq m)$ are chemical elements in reactants and products, respectively: $a_{i j}(1 \leq i \leq m ; 1 \leq j \leq r)$ and $b_{i j}(1 \leq i \leq m ; 1 \leq j \leq s)$ are mimbers of atoms of elements ψ^{i} and Ω. respectivel: in j-th molectle.

Proof. Let there exists an arbitrary chemical equation from s distinct elements and $m+n$ molecules

$$
\begin{equation*}
\sum_{i=1}^{\infty} x_{j} \Xi_{j}=\sum_{i=1} y_{i} \Theta_{j} \tag{4.2}
\end{equation*}
$$

where $\Xi--\Psi^{1}{ }^{n} \Psi^{2}{ }^{2} \cdots \Psi^{m i n} \quad(1 \leq j \leq r)$ and $\Theta_{j}-$ $\Omega^{1}, \Omega_{n=i}^{7} \cdots \Omega^{m}{ }_{n=i}(1 \leq j \leq s)$. Then previous expression becomes

Now, if we write the above equation in a compact form, then immediately follows (4.1).

The coefficients x_{i}, y_{i} satisfy three basic principles (corresponding to a closed input-output static model ${ }^{197.138}$)

- the low of conversation of aloms,
- the low of conversation of mass, and
- the time-independence of the reaction.

Theorem 4. 2. The chemical equotion (4.1) con be reduced to the following Diophantine matrix equation

$$
\begin{equation*}
A x-B y \tag{4.4}
\end{equation*}
$$

where $A=\left[a_{i 1}\right]_{s, i}$ is a matrix of the reactants, $B=$ $\left\lfloor b_{i j}\right\rfloor_{m}$ is a matrix of the products, $\boldsymbol{x}^{1}=\left(x_{1}, x_{2}, \ldots, x_{i}\right)$
and $\boldsymbol{y}^{\top}=\left(y_{1}, y_{2}, \ldots, y_{s}\right)$ are column vectors of unhhonn coefficients and T denotes transpose.
Proof. If we develop the molecules of the reaction (4.1) in an explicit form, then we obtain a matrix of the reactants A

and a matrix of the products B

From the above development we obtain that

$$
\begin{equation*}
\Xi_{y}=\sum_{j=1}^{m} a_{i j} \Psi^{i}(1 \leq j \leq r) \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\Theta_{j}=\sum_{i-1}^{m} b_{i j} \Omega^{i}(1 \leq j \leq s) \tag{4.6}
\end{equation*}
$$

If we substitute (4.5) and (4.6) into (4.2), follows

$$
\begin{equation*}
\sum_{j=1}^{\gamma} x_{j} \sum_{i=1}^{m} a_{i j} \Psi^{i}=\sum_{j=1}^{s} y_{j}^{m} \sum_{i=1}^{m} b_{i j} \Psi^{j} \tag{4.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=1}^{m} \Psi^{j} \sum_{j=1}^{r} a_{i j} \lambda_{j}=\sum_{i=1}^{m} \Omega^{i} \sum_{j=1}^{s} b_{i j} b_{j} \tag{4.8}
\end{equation*}
$$

i.e., the above expression holds if only if

$$
\begin{equation*}
\sum_{j=1}^{r} a_{i j}^{r_{j}}=\sum_{j=1}^{5} b_{i j} j_{j}(1 \leq i \leq m) \tag{4.9}
\end{equation*}
$$

Last equation if we present in a matrix form, actually we obtain (4.4).
Now we will prove the following result.
Theorem 4. 3. Let $A \in \mathbb{R}^{m r}$ and $B \in \mathbb{R}^{m \cdot s}$. The matrix Diophantine equation (4. 4) is consistent if and only if for some \boldsymbol{A}^{-}

$$
\begin{equation*}
G y=0, \tag{4.10}
\end{equation*}
$$

where

$$
\begin{equation*}
G=\left(I-A A^{+}\right) B \tag{4.11}
\end{equation*}
$$

If this is the case, a representation of the general solution is

$$
\begin{equation*}
y=\left(I-G^{-} G\right) u \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
x=A^{-} B y+\left(I-A^{-} A\right) v, \tag{4.13}
\end{equation*}
$$

with arbitrany vectors $u \in \mathbb{R}^{s \cdot i}$ and $v \in \mathbb{R}^{r}$.
Proof. Matrix equation (4.4) is consistent if and only if there exist vectors $\boldsymbol{x} \in \mathbb{R}^{r \cdot 1}$ and $\boldsymbol{y} \in \mathbb{R}^{s \cdot 1}$ such that

$$
\begin{equation*}
A x-B y=0 \tag{4.14}
\end{equation*}
$$

From (4. 13) we have $A x=\boldsymbol{A} \boldsymbol{A}^{-} \boldsymbol{B} \boldsymbol{y}$, since $\boldsymbol{A}(\boldsymbol{I}$ -$\left.A^{-} A\right)=\mathbf{0}$. Thus, fron (4. 14) follows

$$
\begin{equation*}
A x-B y=A A^{+} B y-B y=-\left(I-A A^{+}\right) B y=-G y, \text { since }(4.11) \text {. } \tag{4.15}
\end{equation*}
$$

On the other hand, from (4.12) it follows that

$$
G y=G\left(I-G^{+} G\right) u=0, \text { since } G=G G^{-} G(4.16)
$$

Imnediately, from (4.16) and (4.15) follows (4.4).
Remark 4. 4. This theorem generalizes the theorem proved in'. By the above theorem, a century old chemistry problem of balancing chemical equations in a general form is completely solved.

Definition 4. 5. Chemical equation (4.1) is stable if $\mathrm{stab}\left(\operatorname{Ext} \boldsymbol{A}_{1} \boldsymbol{B}\right)<0$.

Lemma 4. 6. For amy nonsingular matix \boldsymbol{U} and any vector norm $|\cdot|$, with the induced Lozinskii measwe $\mu,|\boldsymbol{U x}|$ defines another vector nom and its induced mant measure μ_{1} is given by

$$
\begin{equation*}
\mu_{U 1}\left(\operatorname{Ext} \boldsymbol{A}_{\mid} B\right)=\mu\left[U(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B}) U^{-1}\right] . \tag{4.17}
\end{equation*}
$$

Proof. The proof of this lemma follows directly from the definition 3.7.

Theorem 4. 7. For any matrix $\operatorname{Ext} \mid \boldsymbol{B} \in \mathbb{R}$ it holds
$\operatorname{stab}(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B})=\inf \left\{\mu\left(\operatorname{Ext} \boldsymbol{A}_{1}^{\prime} \boldsymbol{B}\right), \mu\right.$ is a Lozinskil measwe on $\mathbb{R}^{n k}$.

Proof. The relation (4.18) obviously holds for diagonizable matrices in view of (4.17) and the first two relations in (3.6). Furthernore, the infimum in (4.18) can be achieved if the matrix $\operatorname{Ext} A B$ is diagonizable. The general case can be shown based on this observation, the fact that $\operatorname{Exta} \mid \boldsymbol{B}$ can be
approximated by diagonizable matrices in and the continuity of $\mu(\cdot)$, which is implied by the property

$$
|\mu(\mathfrak{F})-\mu(N)| \leq|\mathfrak{J}-M|
$$

Remark 4. 8. From the above proof it follows that

$$
\operatorname{stab}(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B})=\inf \left\{\boldsymbol{\mu}_{;}\left[\boldsymbol{U}(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B}) U^{\mathrm{l}}\right], \operatorname{det} U^{\neq 0} 0\right\} .
$$

The same relation holds if μ is replaced by μ_{1}.
Corollary 4. 9. Let Ext $4, \boldsymbol{B} \in \mathbb{R}$. Then $\operatorname{stab}(\operatorname{Ext} A \mid B)$ $<0 \Leftrightarrow \mu(\operatorname{ExtA} 1$ B $)<0$ for some Lozinskil measure μ on $\mathbb{R}^{\prime \prime}$.
There are more results for stability criteria obtained in the works. ${ }^{159.140}$

For the matrices \boldsymbol{A} and \boldsymbol{B} given in the theorem 4.2, let $\operatorname{rank} A \mid B=\rho$ and $\operatorname{ker} A \mid B=\kappa$, where ker denotes the nullity or kernel of matrix $A \mid B$. According t^{1+1}, the deterministic approach is important, since it enables us to classify the chemical reaction as:
1° infeasible when the nullity of the reaction matrix $\boldsymbol{A} \mid \boldsymbol{B}$ is zero;
2° unique (within relative proportions) when the nullity of the reaction matrix $\boldsymbol{A}_{1}^{\prime} \boldsymbol{B}$ is one; or
3° non-wnique when the nullity of the reaction matrix $\boldsymbol{A} \mid \boldsymbol{B}$ is bigger than one.

Possible cases of balancing chemical equations are the following

1. If $m \geq r+s=\rho$, then $\kappa=r+s-\rho=0, i . e$, trivial solution $x, y=0$, the reaction is infeasible.
2. If $m>r+s, \rho=r+s-1$, then $\kappa=r+s-\rho=1$, unique solution $x, y>0$, i. e, the reaction is feasible and is unique.
In practical terms this means that the general procedure for obtaining these coefficients is to solve the system of linear equations derived from the principles of conservation of matter and charge, applied to the reaction element-by-element.
3. If $m \geq r+s, \rho<r+s-1$, then $\kappa=r+s-\rho>1$, $\kappa(>1)$ linearly independent solutions $\boldsymbol{x}, \boldsymbol{y}>\mathbf{0}, i . e$, the reaction is feasible and is non-unique.
4. If $m<r+s, \rho \leq m$, then $\kappa=r+s-\rho \geq 1, \kappa(\geq 1)$ linearly independent solutions $\boldsymbol{x}, \boldsymbol{y}>\mathbf{0}$, i. e., the reaction is feasible and is non-unique.

Last two kinds of the reactions are puzzling in that they exhibit infinite linearly independent solution all of which satisfy the chemical balance, and yet they are not all chemically feasible solutions for a given set of experimental conditions. A unique solution is obtained by imposing a chemical constraint, namely, that reactants have to react only in certain proportions.

5. AN APPLICATION OF THE MAIN RESLLTS

In this section will be applied above method on many chemical equations for their balancing. All chenical equations balanced here appear first time in professional literature and they are chosen with an intention to be avoided to date all well know chemical equations which were repeated many times in the chemical journals for explanation of certain particular techniques for balancing of some chemical equations using only atoms with integer oxidation numbers.
1° First we will consider an infeasible reaction, i. ε., the case when the nullity of the reaction matrix is zero.

Example 5. 1. Consider this equation

$$
\begin{align*}
& x_{1} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4} \mathrm{I}+x_{2} \mathrm{MgBr}_{2}+x_{3} \mathrm{MnO}+x_{4} \mathrm{H}_{3} \mathrm{PO}_{4} \\
& +x_{5} \mathrm{KBr}=y_{1} \mathrm{~K}_{3} \mathrm{PO}_{4}+y_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Br}_{2.98}+y_{3} \mathrm{MgI}_{3} \\
& +y_{4} \mathrm{H}_{2} \mathrm{O}+y_{3} \mathrm{NO}_{2}+y_{6} \mathrm{MnSO}_{4} \tag{5,1}
\end{align*}
$$

By the schemes

are determined the matrix of reactants \boldsymbol{A} and the matrix of the products \boldsymbol{B}, an according to it the
reaction matrix $\boldsymbol{A}^{\prime} \boldsymbol{B}$ obtains the form
$A_{i} B-\left[\begin{array}{ccccccccccc}1.00 & 0 & 0 & 0 & 0 & 0 & 1.00 & 0 & 0 & 0 & 0 \\ 5.00 & 0 & 0 & 0 & 0 & 0 & 6.00 & 0 & 0 & 1 & 0 \\ 15.0 & 0 & 0 & 3 & 0 & 0 & 18.0 & 0 & 2 & 0 & 0 \\ 1.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 0 & 0 & 0 & 1 \\ 4.00 & 0 & 1 & 4 & 0 & 4 & 0.00 & 0 & 1 & 2 & 4 \\ 1.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 2 & 0 & 0 & 0 \\ 0.00 & 1 & 0 & 0 & 0 & 0 & 0.00 & 1 & 0 & 0 & 0 \\ 0.00 & 2 & 0 & 0 & 1 & 0 & 2.98 & 0 & 0 & 0 & 0 \\ 0.00 & 0 & 1 & 0 & 0 & 0 & 0.00 & 0 & 0 & 0 & 1 \\ 0.00 & 0 & 0 & 1 & 0 & 1 & 0.00 & 0 & 0 & 0 & 0 \\ 0.00 & 0 & 0 & 0 & 1 & 3 & 0.00 & 0 & 0 & 0 & 0\end{array}\right]$

The rank of the above matrix is $\rho=11$. Since the nullity of the reaction matrix is $\kappa=r+s-\rho=5+6$ $-11=0$, then we have only a trivial solution $x, y=$ $\mathbf{0}$, that means that the reaction is infeasible.
2° Next, we will consider the case when the chemical reaction is feasible and is unique, i. e., the nullity of its reaction matrix is one. Iere we will balance many special chemical equations with a goal to show the power of the offered mathematical metlod.

Example 5. 2. As a next example to illusirate above method, we will balance this chemical equation

$$
\begin{align*}
& x_{1} \mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{BrNO}_{3}+x_{3} \mathrm{Cu}\left(\mathrm{NH}_{3}\right) \mathrm{KNO}_{3}-x_{3} \mathrm{BeCO}_{3} \\
- & y_{1} \mathrm{C}_{44} \mathrm{H}_{50} \mathrm{O}_{14.98}+y_{2} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+y_{3} \mathrm{PtO}_{3}+y_{4} \mathrm{Br}_{1.98} \mathrm{NO}_{2} \\
+ & y_{3} \mathrm{~K}_{1.59} \mathrm{O}-y_{6} \mathrm{BeO}+y_{7} \mathrm{HNO}_{4} . \tag{5.2}
\end{align*}
$$

From the schemes given below

are determined the matrix of reactants A and the matrix of the products $B, i . e$,

The reaction matrix $\boldsymbol{A} \mid \boldsymbol{B}$, according to the definition 3.5 obtains the form

$$
A_{S} B=\left[\begin{array}{ccccccccccc}
1 & 0 & 0 & 0.000 & 0 & 1 & 0.00 & 0.00 & 0 & 0 \\
2 & 2 & 0 & 0.000 & 2 & 0 & 1.00 & 0.00 & 0 & 1 \\
3 & 3 & 0 & 50.00 & 0 & 0 & 0.00 & 0.00 & 0 & 1 \\
1 & 0 & 0 & 0.000 & 0 & 0 & 1.99 & 0.00 & 0 & 0 \\
3 & 3 & 3 & 14.98 & 6 & 3 & 2.00 & 1.00 & 1 & 3 \\
0 & 1 & 0 & 0.000 & 1 & 0 & 0.00 & 0.00 & 0 & 0 \\
0 & 1 & 0 & 0.000 & 0 & 0 & 0.00 & 1.97 & 0 & 0 \\
0 & 0 & 1 & 0.000 & 0 & 0 & 0.00 & 0.00 & 1 & 0 \\
0 & 0 & 1 & 44.00 & 0 & 0 & 0.00 & 0.00 & 0 & 0
\end{array}\right] .
$$

The rank of the above matrix is $\rho-9$. Since the nullity of the reaction matrix is $\kappa=r+s-\rho=3+7$ $-9=1$, then we have only a unique solution, that means that the reaction is feasible. Next, we will determine the solution x, y.

The Morre-Penrose pseudoinverse $\boldsymbol{A}^{-}-\left(A^{1} A\right)^{-1} \boldsymbol{A}^{1}$ of the malrix \boldsymbol{A} is

$$
688 A=\left[\begin{array}{rrrrrrrrr}
183 & 44 & 66 & 183 & 12 & -161 & -161 & -18 & -18 \\
-161 & 44 & 66 & -161 & 12 & 183 & 183 & -18 & -18 \\
-18 & -72 & -108 & -18 & 168 & -18 & -18 & 92 & 92
\end{array}\right]
$$

and the matrix G has this form

$$
688 G=\left(688 I-A A^{-}\right) B=
$$

-2687.76	1.00	$46 \times .00$	-432. 17	305.17	6.00	-146.00
-10751.04	(14)2.00	-188.091	32\%.44	-13+.68	24,400	104.90
1827.3 .44	-1026.06	$-2 \mathrm{~S}^{2}-000$	-539. 34	-263.6	36.60	-188.60
-2687.76	1.0.1)	-219.001	936.95	345.17	6.150	$-1+6.006$
-9314.44	564.06	32.4.00\%	153.12	88.36	-56. 60	216.80
- 2687.76	345.00 b	125.09	752.34	-372.51	6,60	-146.00
-2687.76	-34.3.00	125.04	25:.34	98.85	6.00	-146.60
-1164.64	-84ti.0)	-486.09	- 278.18	-132.54	428.90	-324.9010
24107..36	-8.46.06	-486.00	-228.18	-132.54	-260.00	-324.60

Required vectors y and x, according to (4.12) and (4.13) are

and $x-A^{\prime} B y+(J-A A) v-\left[\begin{array}{l}0.1356805781 \\ 0.5130378112 \\ 1.5338181820\end{array}\right]$.
Now immediately follows balanced equation in its conventional form
$0.1356805781 \mathrm{Pt}\left(\mathrm{NH}_{5}\right) \mathrm{BrNO}+0.5130378112 \mathrm{Cu}$ $\left(\mathrm{NH}_{5}\right) \mathrm{KNO}_{3}+1.5338181820 \quad \mathrm{BCCO}=0.0348595041$ $\mathrm{C}_{41} \mathrm{H}_{30} \mathrm{O}_{144,4 \mathrm{~s}}-0.5130378112 \mathrm{Cu}\left(\mathrm{NO}_{2}\right)_{2}=0.1356805781$ $\mathrm{PtO}_{3}+0.0681811950 \mathrm{Br}_{1 \times 2} \mathrm{NO}_{2}+0.2604252849 \mathrm{~K}_{1.97} \mathrm{O}+$ $1.5338181820 \mathrm{BeO}^{-0.2031799611 \mathrm{HNO}_{3} .}$

Since the reaction matrix $\boldsymbol{A} \mid \boldsymbol{B}$ has a rectangular format, according to delinition 3. 6 , we will extend it to a square marrix by adding a new row. To do that, we will add the following vector-row ($0,0,0$. $0,0,0,0,0,0,1$) as a 10 h row, such that Exta; B obtains this form

$$
\text { F×t4, } B\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0.000 & 0 & 0 & 1.99 & 0.00 & 0 & 0 \\
3 & 3 & 3 & 14.98 & 6 & 3 & 2.00 & 1.00 & 1 & 3 \\
0 & 1 & 0 & 0.000 & 1 & 0 & 0.00 & 0.00 & 0 & 0 \\
0 & 1 & 0 & 0.000 & 0 & 0 & 0.00 & 1.97 & 0 & 0 \\
0 & 0 & 1 & 0.000 & 0 & 0 & 0.00 & 0.00 & 1 & 0 \\
0 & 0 & 1 & 44.00 & 0 & 0 & 0.00 & 0.00 & 0 & 0 \\
0 & 0 & 0 & 0.000 & 0 & 0 & 0.00 & 0.00 & 0 & 1
\end{array}\right]
$$

The eigenvalues of the matrix $\left[\mathrm{Ex}\left(\boldsymbol{A} \mid \boldsymbol{B}-(\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B})^{\prime} 1 / 2\right.\right.$ are $\lambda_{1}=35.111, \lambda_{2}=-33.595, \lambda_{3}=7.769, \lambda_{1}=1.630, \lambda_{\mathrm{s}}=$ $1.140, \lambda_{\mathrm{v}}=0.919, \lambda_{7}=0.205, \lambda_{\mathrm{s}}=-1.285, \lambda_{\mathrm{c}}=-1.087$. $\lambda_{10}=-0.807$.
The Lozinskii measures of $\operatorname{Ext} \boldsymbol{A} \boldsymbol{B} \boldsymbol{B}$ given by (3.6) with respect to the three common norms (3.5) are
$\mu\left(\operatorname{Ext} A_{\mid} B\right)=\max (2,8,57,2.99,36.98 .2,2.97$,

2, 45, 1)-57,
$\mu_{1}(\operatorname{Ext}\{\mid B)-\max (10,10.5,108.98,9,4,4.99$, 2.97, 2, 6) ${ }^{-108.98 .}$

$$
\mu_{2}\left\{\left[\mathbf{I} \times \mathbf{x} \boldsymbol{A}_{\mid} \mid \boldsymbol{B}+\left(\mathrm{Ext} \boldsymbol{A}_{\mid} \mid \boldsymbol{B}\right)^{\prime}\right] / 2\right\}=35.111 .
$$

Since $\mu_{2}\left\{\left[\operatorname{Ext} \boldsymbol{A}_{1}^{\prime} \boldsymbol{B}+\left(\operatorname{Ext} \boldsymbol{A}_{1}^{\prime} \boldsymbol{B}\right)^{\prime}\right] 2\right\}>0$, according to the definition 4.5 the chemical equation (5.2) is unstable.

Example 5. 3. The chemical equation

$$
\begin{align*}
& x_{1} \mathrm{P}\left(\mathrm{NII}_{3}\right) \mathrm{BrNO}+x_{2}\left[4 \mathrm{Fe}(\mathrm{CN})_{;} ; 3 \mathrm{Fe}(\mathrm{CN})_{2}+x_{3} \mathrm{C}_{21} 1 I_{311} \mathrm{O}_{3},\right. \\
& +x_{4} \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+x_{5} \mathrm{~K}_{2} \mathrm{BeO}_{2}=y_{1} \mathrm{Cu}\left(\mathrm{NII}_{;}\right) \mathrm{KNO}_{;}+y_{2} \mathrm{BeCO}_{3} \\
& +y_{3} \mathrm{~K}_{3, y} \mathrm{Fe}(\mathrm{CN})_{n}+y_{4} \mathrm{PtO}_{2}+y_{3} \mathrm{Br}_{1.46} \mathrm{NO}_{2}+y_{6} 1 / \mathrm{NO}_{3} \tag{5.3}
\end{align*}
$$

like a characteristic case will be balanced too. lirom the schemes given below
A
are determined the matrix of reactants A and the matrix of the products B.

The reaction matrix $\boldsymbol{A} \mid \boldsymbol{B}$, according to the detinition 3.5 obtains this form
$\left[\begin{array}{lllllllllll}1 & 0.00 & 0.00 & 0 & 0 & 0 & 0 & 0.00 & 1 & 0.00 & 0 \\ 2 & 18.0 & 0.00 & 2 & 0 & 2 & 0 & 6.00 & 0 & 1.00 & 1 \\ 3 & 0.00 & 50.0 & 0 & 0 & 3 & 0 & 0.00 & 0 & 0.00 & 1 \\ 1 & 0.00 & 0.00 & 0 & 0 & 0 & 0 & 0.00 & 0 & 1.96 & 0 \\ 3 & 0.00 & 15.0 & 6 & 2 & 3 & 3 & 0.00 & 2 & 2.00 & 3 \\ 0 & 7.00 & 0.00 & 0 & 0 & 0 & 0 & 1.00 & 0 & 0.00 & 0 \\ 0 & 18.0 & 44.0 & 0 & 0 & 0 & 1 & 6.00 & 0 & 0.00 & 0 \\ 0 & 0.00 & 0.00 & 1 & 0 & 1 & 0 & 0.00 & 0 & 0.00 & 0 \\ 0 & 0.00 & 0.00 & 0 & 2 & 1 & 0 & 3.97 & 0 & 0.00 & 0 \\ 0 & 0.00 & 0.00 & 0 & 1 & 0 & 1 & 0.00 & 0 & 0.00 & 0\end{array}\right]$

The rank of the above matrix is $\rho-10$. Since the
nullity of the reaction matrix is $\kappa^{-}-r+s-\rho-5+6$ - 10-1, then we have only a unique solution, that means that the reaction is feasible. Next, we will determine the solution $\boldsymbol{x}, \boldsymbol{y}$.

The Moore-Penrose pseudoinverse $\boldsymbol{A}^{1}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{t}}$ of the matrix \boldsymbol{A} is

3821829615 A -
$\left[\begin{array}{rrrrr}530923221 & 661977522 & 654140313 & 530923221 & -175464270 \\ 7914996 & 123779502 & -48555612 & 7914996 & -39240720 \\ -18772587 & -45218394 & 29117439 & -18772587 & 13543215 \\ -271169424 & -152766738 & -354633372 & -271169424 & 637257480 \\ 70185708 & -86901384 & -60307176 & 70185708 & 71450960\end{array}\right.$
$55404972-683523900-271169424 \quad 140371416 \quad 70185708$
$51402897 \quad 68554.350-12114684 \quad 31392576 \quad 15696288$ $-10122084 \quad 49154760 \quad 4177498 \quad-10834572 \quad-5417286$ $-84802788 \quad 185745600303818211 \quad-509805984-254902992$ $109874016 \quad 44172600-254902992 \quad 1471571078 \quad 735785539$
and the matrix \boldsymbol{G} has this form

```
3821829615 G-(3821829615 I-AA})\boldsymbol{B
```

$\left[\begin{array}{rrr}-2629185165.00 & 1139731002.00 & -483401225.52 \\ 1050524550.00 & -803280606.00 & 1845272340.96 \\ 1783528350.00 & -799162944.00 & 25653265.44 \\ -2629185165.00 & 1139731002.00 & -483401225.52 \\ -1131087940.00 & 574862740.00 & -933567342.40 \\ -24135300.00 & 234300654.00 & -5488412135.04 \\ -1641138600.00 & 712163775.00 & 289110156.00 \\ 3485478540.00 & -1842615048.00 & 1910859372.48 \\ 1649236275.00 & -1988622038.00 & 3781386588.23 \\ -1076296670.00 & 2827518596.00 & -5695638491.06\end{array}\right.$

3641834934.00	-1351658495.16	-789725025.00
-1096484442.00	-1156605852.12	198603765.00
-955676193.00	-1308663759.48	226220040.00
-179994681.00	6139127550.24	-78972502500
532719070.00	483911309.20	167860800.00
493965108.00	-425680179.12	297487890.00
904386900.00	1322148144.00	314293500.00
-1003345536.00	-590256150.96	-1404372330.00
-426175256.00	-387129047.36	-134288640.00
-213087628.00	-193564523.68	-67144320.00

Required vectors y and x, according to (4.12) and (4.13) are

$$
y=\left(I-G^{-} G\right) u=\left[\begin{array}{c}
1.2365580746 \\
0.9079895101 \\
0.1459498604 \\
1.0653080872 \\
0.5435245343 \\
1.0866921189
\end{array}\right]
$$

2008. lol 52 부 3

Now immediately follows balanced equation in its conventional form
$1.0653080872 \mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{BrNO}_{3}-0.0208499800$
$\left\lfloor 4 \mathrm{Fe}(\mathrm{CN})_{;} \cdot 3 \mathrm{Fe}(\mathrm{CN})_{2}\right]+0.0320088416 \mathrm{C}_{44} \mathrm{II}_{50} \mathrm{O}_{15}+$ $1.2365580746 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}-0.9079895101 \mathrm{~K}_{2} \mathrm{BeO}_{2}$ $=1.2365580746 \mathrm{Cu}\left(\mathrm{NII}_{i}\right) \mathrm{KNO}_{i}+0.9079895101 \mathrm{BeCO}_{\text {; }}$ $+0.1459498604 \mathrm{~K}_{\mathrm{i}, 97} \mathrm{Fc}(\mathrm{CN})_{0}+1.0653080872 \mathrm{PtO}_{2}$ $+0.5435245343 \mathrm{Br}_{1.91} \mathrm{NO}_{2}-1.0866921189 \mathrm{IINO}_{3}$.

According to the definition 3.6, extended matrix obtains the form

		0.000			00	00					
		18.00	. 00	2	02	20	6.0	. 0	0		1
		0.00 50	50.0	0	03	30	0.0	0		0,00	
		0.000	0.00	0	0	00	0.0	00	0	.,	
		0.001	5.0		23	33	0.0	10		2.00	
Fxtais -		7.000	D. 00		00	0	1.0	,00		0.00	
	018	18.04	4.0	0	00	0	6.0	\% 0		0.00	
	00.0	3.090.	0,00	0	01	10	0.0		0	, 0	
	00.0	0.000	b.00	0	21	1	3.9				
	00.0	6.000 0	b. 00	0	10	0	0.0			.	
	00.0	2.00 0			1	0					

The eigenvalues of the matrix $\left\lceil\right.$ tixt $\left.A_{1} B+\left(\text { ixt } A_{1}^{1} B\right)^{\mathrm{L}}\right]$ 2 are $\lambda_{1}=59.824, \lambda_{2}=21.786, \lambda_{1}=-10.767, \lambda_{4}=5.648$, $\lambda_{5}-4.030, \lambda_{6}-2.045, \lambda_{2}-0.940, \lambda_{8}-0.044, \lambda_{4}-1.678$, $\lambda_{16}-0.831, \lambda_{11}-1.059$
The Lozinskii measures of $\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B}$ given by (3.6) with respect to the three common norms (3.5) are $\mu(\operatorname{Ex|A|B})=\max (2,32,57,2.96,39,8.69,2$, $6.97,2,1)-69$,

$$
\mu_{1}(\operatorname{Ex} t \boldsymbol{A} \mid \boldsymbol{B})-\max (10,43,109,9,5,10,5,16.97 .
$$

3. $4.96,6)-109$,

$$
\mu_{2}\left\{\left[\mathbf{I} \times \mathbf{x} A_{\mid}^{\prime} \boldsymbol{B}+\left(\mathbf{I X x} A_{\mid}^{\prime} B\right)^{\prime}\right] / 2\right\}=59.824 .
$$

Since $\mu_{2}\left\{\left[\operatorname{txt} \boldsymbol{A}_{1}^{1} \boldsymbol{B}+\left(\operatorname{text} \boldsymbol{A} \boldsymbol{A}_{1} \boldsymbol{B}\right)^{1} \mid 2\right\}>0\right.$, according to the definition 4.5 the chemical equation (5.3) is unstable.

Example 5.4. We will now balance this equation
$x_{1} \mathrm{KAu}(\mathrm{CN})_{2}-x_{2} \mathrm{AgRuAuTe}_{\mathrm{k}}+x_{i} \mathrm{Fe}_{2}\left(\mathrm{SO}_{2}\right)_{;}+x_{1}$ $\mathrm{N}_{7} \mathrm{Sc}_{4}+x_{5} \mathrm{WO}_{3}-x_{6} \mathrm{Na}_{3} \mathrm{CO}_{3}+x_{7} \mathrm{H}_{2} \mathrm{CO}_{3}+x_{8} \mathrm{IICl}-$
 $\left.y_{3}\left[\mathrm{WCl} \mathrm{N}_{4} \mathrm{NSCl}\right)\right]_{3}+y_{1} \mathrm{~K}_{3.08} \mathrm{Fc}(\mathrm{CN})_{6}+y_{5} \mathrm{Au}_{2} \mathrm{O}_{3}-$ $v_{8} \mathrm{TcO}_{3}+y_{3} \mathrm{AgO}+y_{8} \mathrm{NO}_{2}$.

The matrix of reactants \boldsymbol{A} is

	$\begin{aligned} & \underset{y}{7} \\ & \underset{y}{7} \\ & \underset{y}{7} \end{aligned}$	$\stackrel{\stackrel{2}{3}}{\substack{3 \\ \underset{y y y y}{3} \\<}}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \text { N' } \\ & Z^{\prime} \end{aligned}$	2		$\underset{\sim}{\otimes}$	E	
	1	0	（）	（）	0	0	0	0	K
	1	1	0	0	0	0	0	0	Nu
	2	0	0	0	0	1	1	0	C
	2	0	0	2	0	0	0	0	N
	0	I	（）	（）	0	0	11	0	Ag
	0	1	0	0	0	0	31	0	Ru
A	0	8	0	0	0	0	0	0	Te
	0	0	2	0	0	0	3	0	Fe
	0	0	3	（）	0	0	0	0	S
	0	0	12	11	3	3	3	0	0
	0	0	0	4	0	0	0	0	Se
	0	0	0	（）	1	0	0	0	W
	0	0	0	0	0	2	0	0	Na
	0	0	0	0	0	0	2	I	II
	0	0	0	0	0	0	6	I	C＇l

and the matrix of the products \boldsymbol{B} is

0								

The reaction matrix $\boldsymbol{\Lambda} \mid \boldsymbol{B}$ ，according to the delimi－
tion 3.5 obtains this form

$$
\left[\begin{array}{lllllllllllllllll}
1 & 0 & 0.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 0.00 & 0.00 & 3.98 & 0 & 0 & 0 & 0 \\
1 & 1 & 0.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 1.00 & 0.00 & 0.00 & 2 & 0 & 0 & 0 \\
2 & 0 & 0.00 & 0 & 0 & 1 & 1 & 0 & 30.0 & 4.00 & 0.00 & 6.00 & 0 & 0 & 0 & 0 \\
2 & 0 & 0.00 & 2 & 0 & 0 & 0 & 0 & 6.00 & 0.00 & 2.00 & 6.00 & 0 & 0 & 0 & 1 \\
0 & 1 & 0.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0 & 0 & 1 & 0 \\
0 & 1 & 0.00 & 0 & 0 & 0 & 0 & 0 & 1.00 & 0.00 & 0.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 8 & 0.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 0.00 & 0.00 & 0.00 & 0 & 1 & 0 & 0 \\
0 & 0 & 2.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 0.00 & 0.00 & 1.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 3.00 & 0 & 0 & 0 & 0 & 0 & 0.00 & 7.00 & 0.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 12.0 & 0 & 3 & 3 & 3 & 0 & 6.00 & 1.00 & 0.00 & 0.00 & 3 & 3 & 1 & 2 \\
0 & 0 & 0.00 & 4 & 0 & 0 & 0 & 0 & 0.00 & 0.00 & 2.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.00 & 0 & 1 & 0 & 0 & 0 & 0.00 & 0.00 & 2.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.00 & 0 & 0 & 2 & 0 & 0 & 0.00 & 1.96 & 0.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.00 & 0 & 0 & 0 & 2 & 1 & 36.0 & 3.00 & 0.00 & 0.00 & 0 & 0 & 0 & 0 \\
0 & 0 & 0.00 & 0 & 0 & 0 & 0 & 1 & 2.00 & 0.00 & 10.0 & 0.00 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The rank of the above matrix is $\rho-15$ ．Since the nullity of the reaction matrix is $\kappa-r+s-p-8+8$ $-15=1$ ，then we have only a unique solution，that means that the reaction is feasible．Next，we will determinc the solution $\boldsymbol{x}, \boldsymbol{y}$ ．

The Moore－Penrose pseudoinverse $\boldsymbol{A}^{1}-\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{I}}$ of the matrix A is
$94083728 \boldsymbol{A}=$

12101640	1108032018	15511840 19.	94：88944	－181	520	－181520	－1452160	2315520
－181530	1225424	－231520－2	－290432	1406	944 1	1406944	11255552	． 34560
115770	11.40488	． 300153618	1852416		280	－17280	（1）	8264608
－2432960	－234004	－ 31023685	5516584		304	36304	4290432	－463104
376.720	370×560	． 775499260	6020352		6160	－56160	－ 449280	themint
－2937280	－2803440	$7815008-4$	46996.18		3840	43840	O 350720	－3544704
． 5174500	－ 57806801	15230016.9	93992\％		7680	87680	0701440	－7089408
58.4560	57888.80 .1	15×310169	9390296		680	－87680	O－701440	7089408
－473：80	－1 $3542+8$	－472947？		708	－58？	745606	$-887+500$	58.74560
－518．70	18%	1－15216	－－5t1	（6）1		人？ 6×1	s：ax	－x： $6(8)$
120）${ }^{\text {a }}$	16r364\％	－ 42630 x		44	－ 154	＋7？ 14	． 3544704	3544745
－64＋6596	$25688+5$	工 70762640	－$-3 \leq 5$	$5+4$		－4912	1174612	－1174917
－30272x ${ }^{\text {a }}$	10931856	－301thorn	61 ¢8s	$16{ }^{\text {a }}$	－1152	20384－1	－11．5312\％	11：1932x
－5317015\％	1920018	8 23082．4	－57ヶ（1）		H035	54288		150x7575
$1063+112$		1 1（4）¢0入k	115 （1）	2 x	1337	75152		3）606i？12
146．3412？	－3\％a00\％	－ 4645%	115ำ2	－	1337	5515＝	13175152	813708576

and the matrix G has this form
$94083728 \boldsymbol{G}=\left(94083728 \boldsymbol{I}-\boldsymbol{\Lambda} \boldsymbol{A}^{-}\right) \boldsymbol{B}=$
$\left[\begin{array}{rrrr}-374666864.00 & -67948582.40 & -85729984.00 & 113908890.24 \\ -370479056.00 & 25745068.80 & -84450432.00 & -256655625.60 \\ 520438048.00 & 129819488.64 & 146991200.00 & 36642428.80 \\ -147865088.00 & -108717731.84 & -61900992.00 & 34730938.88 \\ 4187808.00 & -390076.80 & 1279552.00 & 3888721.60 \\ 98271536.00 & -390076.80 & 1279552.00 & 3888721.60 \\ 33502464.00 & -3120614.40 & 10236416.00 & 31109772.80 \\ 358573824.00 & -123389272.32 & -34235136.00 & 82128182.40 \\ 537860736.00 & 473502187.52 & -51352704.00 & -17933318.40 \\ -194227488.00 & -97810668.16 & 18544032.00 & -9204700.80 \\ 73932544.00 & 54358865.92 & 30950496.00 & -17365469.44 \\ 582682464.00 & 293432004.48 & -55632096.00 & 27614102.40 \\ 31122208.00 & 81806257.92 & -101311648.00 & -4514163.20 \\ 31122208.00 & 81806257.92 & -101311648.00 & -4514163.20 \\ -31122208.00 & -81806257.92 & 101311648.00 & 4514163.20\end{array}\right.$
$\left.\begin{array}{rrrrr} & -20197920.00 & 5214880.00 & 1435760.00 & -16950464.00 \\ 165462528.00 & -6096832.00 & 10096.00 & -16697472.00 \\ -40315632.00 & -7902832.00 & -3020144.00 & -31322272.00 \\ -32316672.00 & 8343808.00 & 2297216.00 & 48146240.00 \\ -2507008.00 & -11311712.00 & 92658064.00 & 252992.00 \\ -2507008.00 & -11311712.00 & -1425664.00 & 252992.00 \\ -20056064.00 & 3590032.00 & -11405312.00 & 2023936.00 \\ -24743808.00 & -19905408.00 & -6692736.00 & -17159424.00 \\ -37115712.00 & -29858112.00 & -10039104.00 & -25739136.00 \\ 13402896.00 & 10782096.00 & 3625232.00 & 9294688.00 \\ 16158336.00 & -4171904.00 & -1148608.00 & -24073120.00 \\ -40208688.00 & -32346288.00 & -10875696.00 & -27884064.00 \\ 53472.00 & -12221728.00 & -3927776.00 & 1719104.00 \\ 53472.00 & -12221728.00 & -3927776.00 & 1719104.00 \\ -53472.00 & 12221728.00 & 3927776.00 & -1719104.00\end{array}\right]$

Required vectors y and x, aceording to (4.12) and (4.13) are
$y=\left(I-G^{+} G\right) u=\left[\begin{array}{l}0.0710721984 \\ 0.1656824131 \\ 0.0679331915 \\ 0.7731845945 \\ 1.4913322357 \\ 0.5685775876 \\ 0.0710721984 \\ 1.0210754230\end{array}\right]$

Now immediately follows balanced equation in its conventional form
$3.0772746861 \mathrm{KAu}(\mathrm{CN})_{2}+0.0710721984 \mathrm{ggRuAuTe}_{8}$ $+0.3865922972 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+0.0339665957 \mathrm{~N}_{2} \mathrm{Se}_{4}-$ $0.1358663829 \mathrm{WO}_{3}-0.1623687648 \mathrm{Na}_{2} \mathrm{CO}_{3}-$ $1.1170850360 \mathrm{H}_{3} \mathrm{CO}_{3}+0.8214763117 \mathrm{IICl}-$ $0.0710721984\left[\mathrm{Ku}_{(}\left(\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{~N}_{2}\right)_{]}\right] \mathrm{Cl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}+0.1656824131$ $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{AuNa}_{146} \mathrm{OS}_{7}+0.0679331915\left[\mathrm{WCl}_{4}\left(\mathrm{NSCCl}^{2}\right)\right]_{2}$ $-0.7731845945 \mathrm{~K}_{: 98} \mathrm{~J}^{\mathrm{C}(C N)_{6}}-1.4913322357 \mathrm{Au}_{2} \mathrm{O}_{3}$ $+0.5685775876 \mathrm{TeO}_{3}-0.0710721984 \mathrm{AgO}+$ $1.0210754230 \mathrm{NO}_{2}$.
obtains the form

The cigenvalues of the matrix $\left.[E \times x A\} B+\left(1 \times x A_{1} \boldsymbol{B}\right)^{\mathrm{l}}\right]$ 2 are $\lambda_{1}-28.656, \lambda_{-}-24.826, \lambda_{3}-9.278, \lambda_{4}-6.650$, $\lambda_{\mathrm{s}}=6.847, \lambda_{\mathrm{r}}=5.301, \lambda_{7}=4.806, \lambda_{8}=3.495, \lambda_{43}=3.389$, $\lambda_{10}=2,805, \lambda_{11}=1,297, \lambda_{12}=-0.937, \lambda_{113}=0.759, \lambda_{14}=-0.312$, $\lambda_{15}=0.040, \lambda_{16}=0.134$.
The Lozinskii measures of $\operatorname{Ext} \boldsymbol{A} \mid \boldsymbol{B}$ given by (3.6) with respect to the three common norms (3.5) are $\mu=(\operatorname{Ext} A \mid B)-\max (4.98,5,44,19,2,2,9,3,10$, $37.6,3,3.96,42,13,1)=44$, $\mu_{1}(\operatorname{Ex} 1 A B)=\max (6,11,17,6,4,6,6,2,81,17.96$, 16. $16.98,5,4,2.4)=81$,

$$
\mu_{2}\left\{\left[\operatorname{Ex} 1 \boldsymbol{A}_{\mid}^{\prime} \boldsymbol{B}+\left(\operatorname{Ex}\left(\boldsymbol{A}_{\mid}^{\prime} \boldsymbol{B}\right)^{\prime}\right] / 2\right\}-28.656 .\right.
$$

Since $\mu_{2}\left\{\left[\operatorname{Ex} 1 A_{1} \boldsymbol{B}+\left(\operatorname{Ext} \boldsymbol{A}_{1} \boldsymbol{B}\right)^{\prime}\right] / 2\right\}>0$, according to the definition 4.5 the chemical equation (5.4) is unstable.

Example 5. 5. Also, we balanced this very interesting chemical equation
$20666316 \mathrm{C}_{69} \mathrm{I}_{39} \mathrm{Cl}_{0} \mathrm{CuN}_{82} \mathrm{O}_{49} \mathrm{~S}_{7}+5103865732 \mathrm{C}_{4} \mathrm{I}_{34} \mathrm{Au}_{2}$ $\mathrm{MnO}_{3} \mathrm{P}_{2}+1457092800 \quad \mathrm{C}_{41} \mathrm{II}_{4} \mathrm{O}_{3} \mathrm{Si}_{3} \mathrm{Ti}-1457092800$ $\mathrm{C}_{4} \mathrm{II}_{3} \mathrm{FCBr}_{3} \mathrm{ClO}_{3}+711775332 \mathrm{C}_{4} \mathrm{I}_{32} \mathrm{O}_{8} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{P}_{2}-10333158$ $\mathrm{As}_{\mathrm{x}} \mathrm{Co}_{2} \mathrm{~N}_{2} \mathrm{O}_{17}+7117753320 \mathrm{ClF}+9670698616 \mathrm{IINO}_{3}$ +2152394100 11, $\mathrm{O}-146703788 \mathrm{SO}-4371278400$ $\mathrm{C}_{14} \mathrm{H}_{3} \mathrm{BrNO} \mathrm{P}_{2}+1423550664 \mathrm{C}_{41} \mathrm{H}_{32} \mathrm{~F}_{i} \mathrm{NP}_{2} \mathrm{Pt}+2967406141$ $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{O}_{10}-20666316 \mathrm{CuCoO}_{3}+41624000 \mathrm{As}_{1985} \mathrm{~N}_{2} \mathrm{PS}_{7}$ $+5103865732 \quad \mathrm{MnO}_{2}+4371278400 \quad \mathrm{SiO}_{2}-1457092800$ $\mathrm{TiFeCl} \mathrm{S}_{5.0}+5103865732 \mathrm{Au}_{2} \mathrm{O}+711775332 \mathrm{Os}_{2} \mathrm{O}_{5}$.

According to the definition 3.6, extended matrix
obtains the form

The eigenvalues of the matrix $\left[E \times \operatorname{A} A_{1}^{\prime} B+\left(E \times x t A_{1}^{1} B\right)^{\mathrm{L}}\right]$ $2 \operatorname{arc} \lambda_{1}=143.364, \lambda_{2}=41.450, \lambda_{:}=14.630, \lambda_{4}=11.150$, $\lambda_{s}=11.154, \lambda_{x_{c}}=6.730, \lambda_{n}=4.060, \lambda_{\mathrm{s}}=3.424, \lambda_{\infty}=3.357$. $\lambda_{10}-3.432 . \lambda_{11}-2.112, \lambda_{12}-2.481, \lambda_{3}-1.348, \lambda_{14}-1.453$, $\lambda_{15}-0.544, \lambda_{16}-0.614, \lambda_{2}-0.575, \lambda_{18}-0.137, \lambda_{09}-0.090$, $\lambda_{25}-0.006$.
The Lozinskii measures of $\operatorname{ExA} \boldsymbol{A} \boldsymbol{B}$ given by (3.6) with respect to the three common norms (3.5) are $\mu \cdot(\operatorname{ExA} \mid B)=\max (377,296,4,35,85,9,6,3,2$, $3,9.986,15.2,4,2,2,13.97 .4,4,1)-377$.
$\mu_{1}(\operatorname{Ex} l \boldsymbol{A} \mid \boldsymbol{B})-\max (168,86,95,88,90,29,2,5$. $3,3.85,85,98,6.11 .986 .3,3,7.97,3.6)-168$, $\mu_{2}\left\{\left[\operatorname{Ext} A_{1}^{\prime} B+\left(I \times x A_{\mid}^{\prime} B\right)^{\prime}\right] / 2\right\}=143.364$.

Since $\mu_{2}\left\{\left[\mathrm{I} \times \boldsymbol{A}_{\boldsymbol{A}}^{1} \boldsymbol{B}+\left(\mathrm{t} \times \boldsymbol{A}_{1}^{\prime} \boldsymbol{B}\right)^{\prime}\right] / 2\right\}>0$, according to the definition 4. 5 the chemical equation (5.5) is unstable.

Example 5.6. An other chemical equation which we balanced is the equation
$103213240 \mathrm{C}_{640} \mathrm{I}_{60} \mathrm{As}_{3} \mathrm{~B}_{4} \mathrm{O}_{16}-5108088 \mathrm{C}_{41} 1 \mathrm{I}_{32} \mathrm{~N}_{2} \mathrm{O}_{0} \mathrm{P}_{2} \mathrm{Rh}_{2}+$ 21220962 AgAuRuTlTe ${ }_{0}+8776350 \quad \mathrm{Fe}_{2}(\mathrm{SCO})_{6}+$ $17552700{\mathrm{La}(\mathrm{CN})_{s}+61083396 \mathrm{CaO}-4388175 \mathrm{Sr}_{3} \mathrm{O}_{3}+}^{2}$ $17552700 \mathrm{SiO}_{2}+20432352 \mathrm{ISCN}+12444612 \mathrm{P}_{2} \mathrm{O}_{3}+$ $141449244 \quad \mathrm{CO}_{2}=103213240 \quad \mathrm{C}_{48} \mathrm{H}_{t: 3} \cdot \mathrm{As}_{3} \mathrm{~B}_{4} \mathrm{O}_{13}-10216176$ $\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{Rh}+8776350 \quad \mathrm{Ca}_{2 \times 0} \mathrm{H}_{2} \mathrm{Ca}_{2} \mathrm{P}_{4} \mathrm{Si}_{2} \mathrm{SrO}_{3-1}-21220962$ $\mathrm{Au}(\mathrm{CN})_{2}+21220 \% 62 \mathrm{AgO}-10610481 \mathrm{Ru}_{2} \mathrm{O}+10663800$ $\mathrm{Tl}_{149} \mathrm{O}_{3}+190988658 \mathrm{TeO}_{3}-73090452 \mathrm{H}_{2} \mathrm{~S}$.

The reaction matrix $\boldsymbol{\Lambda} \mid \boldsymbol{B}$, according to the delini-
tion 3.5 has the form

The eigenvalues of the matrix $\left[A_{1} \mid \boldsymbol{B}-\left(\left.A_{1}\right|^{\prime}\right)^{\prime}\right] / 2$ are $\lambda_{1}=131.840, \lambda_{2}=-24.264, \lambda_{3}=15.402, \lambda_{4}=13.779, \lambda_{5}$ $=-8.097, \lambda_{0}=4.189, \lambda_{7}=3.564, \lambda_{\mathrm{R}}=-3.485, \lambda_{9}=-2.396$, $\lambda_{111}-1.459, \lambda_{11}-1.347, \lambda_{12}-1.023, \lambda_{13}-0.923, \lambda_{14}-$ $0.748, \lambda_{15}-0.449, \lambda_{16}-0.722 . \lambda_{11}-0.513, \lambda_{18}-0.116, \lambda_{14}$ $-0.011, \lambda_{20}-0.075$.
The Lozinskic measures of $\boldsymbol{A} \mid \boldsymbol{B}$ with respect to the three common norms are
$\mu(A ; B)=\max (239,195,6,8,86,12,8,3,2,2$, $3,2.99,10,4,8,3,7.96 .3,3.3)-239$.
$\mu_{1}(A \mid B)-\max (158,88,13,20,7,2,5,3,4,7,3$. 152, 83, 41.96, 5, 2, 3, 4.99. 4, 3)-158, $\mu_{2}\left\{\left[\boldsymbol{A} \mid \boldsymbol{B}-\left(\boldsymbol{A}_{1}^{\prime} \boldsymbol{B}\right)^{\prime}\right] / 2\right\}=131.840$.

Because $\mu_{2}\left\{\left[A_{1}^{\prime} B^{-}\left(A_{1}^{\prime} B\right)^{T}\right] / 2\right\}>0$, that means that the chemical equation (5.6) is unstable.

Example 5. 7. It will be benefit for us if we balance some little bit bigger chemical equation, for instance like this
$76152 \mathrm{C}_{32} \mathrm{II}_{22} \mathrm{MgN}_{4} \mathrm{O}_{4}+9528 \quad\left[\mathrm{PtCl}_{4}\left(\mathrm{NSeCl}_{2}\right]_{2}+\right.$ $1574253 \mathrm{IiNO}_{3}+1248508 \mathrm{RuPO}_{4}+624290 \mathrm{NiCl}_{2}$ $+761917\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{i} \cdot 12 \mathrm{MoO}_{3}-548066 \mathrm{PdCl}_{4}-$ $\left.19056 \mathrm{AgCsCl}_{2}+9528 \mathrm{Cs}_{5} \mathrm{~Pb}_{3} \mathrm{O}_{1}+19056 \mathrm{~K}_{1} \mathrm{PCCCN}\right)_{1}$ $+14292 \mathrm{Crl}_{3}-14292 \mathrm{BeSO}_{3}+6352 \mathrm{BiAt}_{3}+624290$ $\mathrm{Mg}(\mathrm{SCO})_{+}+624290\left\{\left[\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]_{2} \mathrm{Ag}_{2}=6352 \mathrm{Bi}+\right.$ $624290 \mathrm{Ni}(\mathrm{SCO})_{4}\left\{\left(1 \mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Ag}_{2}+14292 \mathrm{BeCSiCrKO}{ }_{7}\right.$ $+42876 \mathrm{Kl}(\mathrm{CN})_{2}-9143004 \mathrm{MoO}_{3}+700442 \mathrm{RuMg}(\mathrm{CN})_{6}$ $+548066 \mathrm{RuldCl}_{6}+2010425 \mathrm{H}_{3} \mathrm{PO}_{4}+19056 \mathrm{AtCs} \mathrm{S}_{2}$ $\mathrm{PbK} . \mathrm{P} \wedge \mathrm{gFeCl}_{15}+4800 \mathrm{~N}_{2} \mathrm{Se}_{997}-5084463 \mathrm{H}_{2} \mathrm{O}$.

(5.7)

According to the definition 3.6, extended matrix obtains the form

The eigenvalues of the matrix $\left[\operatorname{Ex} 1 \boldsymbol{1}, \boldsymbol{B}+(\operatorname{Ex}|\boldsymbol{A}| \boldsymbol{B})^{\boldsymbol{\prime}}\right] /$ 2 are $\lambda_{1}=112.534, \lambda_{2}=-45.894, \lambda_{3}=22.466, \lambda_{4}=22.572$, $\lambda_{s}=-11.987, \lambda_{6}=11.234, \lambda_{=}=-5.757, \lambda_{\mathrm{R}}=-5.367, \lambda_{4}=$ 5.011, $\lambda_{10}-3.199, \lambda_{11}-2.849 . \lambda_{: 1}-2.010, \lambda_{1:}-1.948$, $\lambda_{11}-1.549, \lambda_{1:}=1.571, \lambda_{11}-1.269, \lambda_{17}-1.042, \lambda_{18}-1.070$, $\lambda_{14}-0.814, \lambda_{n 11}-0.614, \lambda_{n 1}-0.809, \lambda_{2}-0.516, \lambda_{3}-0.398$, $\lambda_{21}=0.154, \lambda_{35}=0.091, \lambda_{26}=0.012$.
The Lorinskii measures of IExt $A_{1} \boldsymbol{B}$ given by (3.6) with respect to the three common norms (3.5) are
$\mu .(\operatorname{Ext} A, B)-\max (222,210,3,26,84,3,39,5.97,3$,
$11,2,13,2,6,5,3,7,2,2,4,2,2,2,4,8,1)-222$,
$\mu_{1}\left(\operatorname{Ext} \boldsymbol{A}_{1} \boldsymbol{B}\right)-\max (137,16,5,6,3,68,5,4,8$, $17,4,5,4,13,138,1,151,12,6,4,14,8,8,23$, $7.97,4)=151$,
$\mu_{2}\left\{\left\{\operatorname{ExLA}_{\mid}\left|\boldsymbol{B}+\left(\operatorname{Ex}\left|\boldsymbol{A}_{\mid}\right| \boldsymbol{B}\right)^{\mid}\right| / 2\right\}-112.534\right.$.
Since $\left.\mu_{2}\left\{\left[\operatorname{Ex} 1 \boldsymbol{A}_{\mid} \boldsymbol{B}+(\operatorname{Ext} \boldsymbol{A}\}^{\prime} \boldsymbol{B}\right)^{\prime}\right] / 2\right\}>0$, according to the definition 4. 5 the chemical equation (5.7) is unstable.

Example 5. 8. Also we balaneed this chemical equation
$1044\left(\mathrm{NH}_{3}\right)_{\mathrm{I}}\left[\mathrm{P}\left(\mathrm{Mo}_{2} \mathrm{O}_{10}\right)\right]_{i}+4356 \mathrm{LaHgTKrS} \mathrm{S}_{6}+$ $10048 \mathrm{AgRuAuTe}_{8}-8776 \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{AuNa}_{2} \mathrm{OS}_{3}+252000$ $\mathrm{KAu}(\mathrm{CN})_{2}+31500 \mathrm{MgFe}_{2}\left(\mathrm{SO}_{4}\right)_{+}-5024 \mathrm{PbCrO}_{2}-$
$22550 \mathrm{Sn}_{3}\left(\mathrm{AsO}_{4}\right)_{i}+67650 \mathrm{BeSiO}_{i}+67650 \mathrm{CuCsCl}_{;}$ $+10947 \mathrm{~N}_{7} \mathrm{SiSc}_{6}+248050 \mathrm{CaAlF}_{5}+22550 \mathrm{BiAt}_{3}+$ $32841 \mathrm{~W}_{2} \mathrm{O}-140336 \mathrm{ll}_{2} \mathrm{CO}_{5}+145556 \mathrm{HCl}-67650$ CaBcAsSAtCss ${ }_{13}-10048\left[\mathrm{Ru}_{(}\left(\mathrm{C}_{10} \mathrm{H}_{3} \mathrm{~N}_{3}\right)_{3} \mathrm{CCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right.$ $+32841\left[\mathrm{WCl}_{4}(\mathrm{NSCCl})\right]+12528\left(\mathrm{NH}_{4}\right)_{2} \mathrm{MoO}_{2}-63000$ $\mathrm{K}_{4}+(\mathrm{CN})_{6}+2512 \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+31500 \mathrm{MgS}_{2} \mathrm{O}_{3}+4356$ $\mathrm{LaTlS}_{3}+4176 \mathrm{Na}_{3} \mathrm{PO}_{4}-5024 \mathrm{Ag}_{2} \mathrm{PbO}_{2}-67650 \mathrm{SnSO}_{2}$ $+180400 \mathrm{CaF}_{2}-2200 \mathrm{Hg}_{1.48} \mathrm{~S}+4356 \mathrm{ZrO}_{2}+33825$ $\mathrm{Cu}_{2} \mathrm{O}-124025 \mathrm{Al}_{2} \mathrm{O}_{3}+11275 \mathrm{Bi}_{2} \mathrm{O}_{3}+78597 \mathrm{SiO}_{2}$ $+135412 \mathrm{Au}_{2} \mathrm{O}-80384 \mathrm{TeO}_{3}$.

Also, the above equation is unstable.

Example 5. 9. This balanced chemical equation $17592\left(\mathrm{NlI}_{)}\right)\left[\mathrm{P}\left(\mathrm{Mo}_{5} \mathrm{O}_{10}\right)\right]_{1}+339756 \mathrm{Prl}\left[\mathrm{gTlZrS}_{6}\right.$ $+675522 \ln _{3} / \mathrm{nCcCl}_{12}+189456 \mathrm{AgRuAuOS}_{8}-$ $152916 \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{Aul}_{\mathrm{i}_{2} \mathrm{OS}_{-}}-5714424 \mathrm{KAL}(\mathrm{CN})_{2}+714303$ $\mathrm{MgMn}_{2}\left(\mathrm{SO}_{4}\right)_{4}-94728 \mathrm{PbCrO}_{4}-558068 \mathrm{Sn}_{3}\left(\mathrm{WO}_{4}\right)_{3}+$ $1674204 \mathrm{BeSiO}_{3}+1674204 \mathrm{CuCSCl}_{3}+337761 \mathrm{~N}_{2} \mathrm{SiSe}_{6}+$ $6138748 \mathrm{CaAlF}_{5}+558068 \mathrm{BiAt}_{3}+1013283 \mathrm{Te}_{2} \mathrm{O}$ $+2214804 \mathrm{H}_{2} \mathrm{CO}_{3}-3462564 \mathrm{HClO}-1674204$ CaBeWSA1CsF $13+189456 \mathrm{Ru}_{13}\left(\mathrm{C}_{10}\left(\mathrm{H}_{8} \mathrm{~N}_{2}\right)_{3} \mathrm{Cl}_{2} \mathrm{II}_{2} \mathrm{O}_{6}\right.$ $+1013283 \mathrm{Te}_{2} \mathrm{Cl}_{8}\left(\mathrm{NSelnCl}_{3}\right)_{2}+211104\left(\mathrm{NIL}_{4}\right)_{2} \mathrm{MoO}_{4}$ $+1428606 \mathrm{~K}_{4} \mathrm{Mn}(\mathrm{CN})_{n}-675522 \mathrm{CeCl}_{2}+47364$ $\mathrm{Li}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+714303 \mathrm{MgS}_{2} \mathrm{O}_{3}+339756 \mathrm{PrTlS}_{2}-$ $70368 \mathrm{Li}_{3} \mathrm{PO}_{1}+94728 \mathrm{Ag}_{2} \mathrm{PbO}_{2}+1674204 \mathrm{SnSO}_{1}$ $+4464544 \mathrm{CaF}_{2}+169878 \mathrm{Hg}_{3} \mathrm{~S}+339756 \mathrm{ZrO}_{2}-$ $837102 \mathrm{Cu}_{2} \mathrm{O}+3069374 \mathrm{Al}_{2} \mathrm{O}_{3}+293720 \mathrm{Bi}_{1.0} \mathrm{O}_{3}-$ $2011965 \mathrm{SiO}_{2}+3028398 \mathrm{Au}_{2} \mathrm{O}+1515648 \mathrm{OsO}_{3}+$ 675522 ZnO .
is unstable too.
3° Next, we will consider the case when the chemical reaction is non-unique, $i . e$, when the nullity of its reaction matrix is bigger than one.

Example 5. 10. Last considered equation in this work will be this equation
$x_{1} \mathrm{NH}_{4} \mathrm{ClO}_{4}+x_{2} \mathrm{HNO}_{3}+x_{3} \mathrm{HCl}=y_{1} \mathrm{HClO}_{4}+y_{2}$ $\mathrm{NOCl}+y_{3} \mathrm{~N}_{2} \mathrm{O}+y_{4} \mathrm{~N}_{2} \mathrm{O}_{3}+y_{3} \mathrm{H}_{2} \mathrm{O}-y_{6} \mathrm{Cl}_{2}$ (5.10)

From (5, 10) follows this system of linear equations

$$
x_{1}-x_{2}=y_{2}+2 y_{3}+2 y_{4}
$$

$$
\begin{gathered}
4 x_{1}+x_{2}+x_{3}=y_{1}+2 y_{5}, \\
x_{1}+x_{3}=y_{1}+y_{2}+2 y_{6}, \\
4 x_{1}+3 x_{2}=4 y_{1}+y_{2}+y_{3}+3 y_{+}+y_{8}
\end{gathered}
$$

The general solution of the above system is

$$
\begin{gathered}
y_{1}=4 x_{1}+x_{2}+x_{3}-2 y_{s} y_{2}=-3 x_{1}-x_{2}+2 y_{s}-2 y_{6}, \\
y_{3}=15 x_{1} / 2+3 x_{2} / 2+2 x_{3}-4 y_{3}+y_{1} / 2, \\
y_{4}=-11 x_{1} / 2-x_{2} / 2-2 x_{3}+3 y_{s}+y_{1} / 2 .
\end{gathered}
$$

where $x_{1}, x_{2}, x_{3}, y_{s}$ and y_{s} are arbitrary real numbers.
Now, the balanced equation has a form

$$
\begin{aligned}
& x_{1} \mathrm{NH}_{4} \mathrm{ClO}_{+}+x_{2} \mathrm{HNO}_{3}+x_{3} \mathrm{HCl}=\left(4 x_{1}+x_{2}+x_{3}-\right. \\
& \left.2 y_{5}\right) \mathrm{HClO}_{4}+\left(-3 x_{1}-x_{2}+2 y_{5}-2 y_{6}\right) \mathrm{NOCl}+\left(15 x_{1} / 2\right. \\
& \left.+3 x_{2} / 2+2 x_{3}-4 y_{5}+y_{6} / 2\right) \mathrm{N}_{2} \mathrm{O}+\left(-11 x_{1} / 2-x_{2} / 2-2 x_{3}\right. \\
& \left.+3 y_{5}+y_{6} / 2\right) \mathrm{N}_{2} \mathrm{O}_{3}+y_{5} \mathrm{H}_{2} \mathrm{O}+y_{6} \mathrm{Cl}_{2} .
\end{aligned}
$$

where $x_{1}, x_{2}, x_{3}, y_{s}$ and y_{6} are arbitrary real numbers.

A particular case of equation (5.10) for $y_{4}=0$ is solved in^{3}, but there the author balanced this equation on completely different way by using of nonsingular matrix method. So, it is the mathematical consideration of this equation, but for chemical purposes stoichiometric coefficients must be unique.
Now, if we employ here offered method we obtain that only possible chemical equation is this equation

$$
\begin{gathered}
30 \mathrm{NH}_{4} \mathrm{ClO}_{4}+2 \mathrm{NOCl}+12 \mathrm{Cl}_{2}=11 \mathrm{HClO}_{4}+ \\
6 \mathrm{~N}_{2} \mathrm{O}+5 \mathrm{~N}_{2} \mathrm{O}_{3}+10 \mathrm{HNO}_{3}+45 \mathrm{HCl}+27 \mathrm{H}_{2} \mathrm{O},
\end{gathered}
$$

which actually is a particular case of the chemical equation (5.10) for $x_{1}=1, x_{2}=1 / 3, x_{3}=-3 / 2, y_{3}=9 / 10$ and $y_{6}=-2 / 5$.

Also, in the article ${ }^{7 /}$, is balanced a particular case for $x_{1}=34, x_{2}=36, x_{3}=8$, and $y_{2}=y_{6}=0$.

6. CONCLUSION

The practical power of the matrix procedure as the most general tool for balancing chemical equations is demonstrable. By this method are balanced
completely new classes of chemical equations with atoms, which have fractional oxidation numbers. Research shown that employed pseudoinverse matrix method founded on virtue of the solution of the Diophantine matrix equation works perfectly for the all chemical equations.

Actually, this method is unique method both in mathematics and chemistry, which generalize to date the all known methods and particular techniques for balancing chemical equations cited in the bibliography given below. In other words speaking, the mathematical method given here is applicable for the all possible cases for balancing chemical equations, does not matter what kind of atoms they possess - fractional or integer oxidation numbers. Also, this method determine and $r+s-\rho$ linear independent solutions when $\kappa>1$, i.e., when the reaction is feasible and is non-unique. This is the main advantage of the method in relation of other known particular methods and tecluiques.

For all considered chemical equations which have a unique solution is made stability analysis, and as shown results all of them are unstable. This stability analysis is founded on virtue of the Lozinski measures of extended matrix.

REFERENCES

1. Jones, M. SLAM Rev. 1971, 13, 571.
2. Krishnamurthy, E. V. Int. I. Moth. Educ. Sci. Technol. 1978, 9, 323.
3. Das, S. C. Int. J. Math Edarc. Sci. Technol. 1986, 17, 191.
4. Hemdon, W. C. Int. J. Math. Educ. Sci. Technol. 1987, 18, 745.
5. Das, S. C. Int. J. Math Educ. Sci. Technot. 1987, 18, 746.
6. Sen, S. K; Agawwal, H; Sen, S. Math. \& Comp. Modeling 2006, 44, 678.
7. Risteski, I. B. SLAM Problems and Solutions. 2007, I, htpy/antw sian.org/foumals/problems/downloadfiles: $71-025 s . p d f$.
8. Risteski, I. B. Int. J. Math Manuscripts, 2007, 1, 180.
9. Brown, J. P; Brown, L. P; Redd, R M. J. Chem. Educ. 1972, 49, 754.
10. Rosen, A. I. .J. Chem. Educ. 1977, 54, 704.
11. Goldberg, S. Z. J. Chem. Educ. 1978, 55, 532.
12. Kennedy, J. H. J. Chem Educ. 1982, 59, 523.
13. Blakley, G R. J. Chem. Educ. 1982, 59, 728.
14. Alberty, R. A. J. Chem. Educ. 1983, 60, 102
15. Loercher, W. J. Chem. Edwe. 1986, 63, 74.
16. Cheluget, E. L; Missen, R. W. J. Phys. Chem. 1987, 91, 2428
17. Missen, R. W. Snuth, W. R. J. Chem. Educ. 1999, 66, 217.
18. Missen, R. W; Snith, W. R. J. Chem. Etuc. 1990, 67, 876.
19. Alberty, R. A. J. Chem. Educ. 1981, 68, 984.
20. Filgueiras, C. A. L. J. Chem. Educ. 1992, 69, 276.
21. Riley, J; Richmond, Th G J. Chem. Echuc. 1992, 69, 114.
22. Alberty, R. A. J. Chem. Educ. 1992, 69, 493.
23. Toby, S. J. Chem. Edtuc. 1994, 71, 270
24. Weltin, E. J. Chem. Educ. 1994, 71, 295.
25. Wink, D. J. J. Chem. Edtuc. 1994, 71, 490.
26. Campanatio, J. M. Computers Chem. 1995, I9, 85.
27. Hernándes, M. C. Edac. Quim. 1997, 8, 56.
28. Smith, W. R; Missen, R. W. J. Chem. Edtc. 1997, 74, 1369.
29. Kumar, D. D. J. Sci. Educ. Technol. 2001, 10, 347.
30. Endslow, A. W. S. J. Chem. Edwc. 1931, 8, 2453.
31. Scheflan, L. J. Chem. Educ. 1932, 9, 358.
32. Kendall, J. J. Chem Educ. 1932, 9, 360.
33. Clark, A. R. J. Chem. Educ. 1932, 9, 360.
34. Dietz, Jr. N. J. Chem. Educ. 1932, 9, 361.
35. Otto, E. J. Chem. Educ. 1932, 9, 361.
36. Menschutkin, B. J. Chem. Edtuc. 1932, 9, 560.
37. Slotterbeck, O. J. Chem. Educ. 1932, 9, 751.
38. Peet, B. W. J. Chem. Edte. 1932, 9, 752
39. Lehrman, L. J. Chen. Edtuc. 1932, 9, 944.
40. Wernimont, G J. Chem. Educ. 1932, 9, 1124.
41. Lehrman, L. J. Chem. Educ. 1932, 9, 1125.
42. Melville, J. H. J. Chem. Edtc. 1932, 9, 1299.
43. Smith, F. W. J. Chem. Educ. 1933, IO, 250.
44. McNeil, H. C. J. Chem. Educ. 1933, IO, 707.
45. Deming, H. G J. Chem. Ettuc. 1934, H, 125.
46. Crocker, C. J. Chem. Etuce. 1968, 45, 731.
47. Copley, G N. J. Chem. Etuc. 1969, 46, 699.
48. Crocker, R. J. Chem. Educ. 1969, 46, 699.
49. Van Cleave, G Chem 13 Nens 1974, 62, 12.
50. Robinson, D. A. Chem I3 Nervs 1974, 64, 7.
51. Ludwig, O. G J. Chem. Ethuc. 1996, 73, 507.
52. Hart, D. M. J. Chem. Ethw. 1996, 73, A226.
53. Hait, D. M. J. Chem. Edwa. 1997, 74, 1256.
54. Zaugg, N. S. J. Chem. Edrac. 1996, 73, A226.
55. Stout, R. J. Chem. Edtc. 1996, 73, A227.
56. Balasubramanian, K. J. Moth. Chem. 2001, 30, 219.
57. Ferguson, H. W. Chemistry 1967, 40(2), 18.
58. Fabishak, V. L. Chemistry 1967, 40(11), 18.
59. Copley, G N. Chemistyy 1967, 41(9), 22.
60. Swinehart, D. F. J. Chem. Edhc. 1985, 62, 55.
61. Harjadi, W. J. Chem. Edhte. 1986, 63, 978.
62. Olson, J. A. J. Chem. Edwc. 1997, 74, 538.
63. Bottommley, J. Chem. News 1878, 37, 110 .
64. Bennett, G W. J. Chem. Edic. 1954, 31, 324.
65. Haas, R; Gayer, K. H. J. Chem. Educ. 1962, 39, 537.
66. Carrano, S. A. J. Chem. Educ. 1978, 55, 382.
67. Steinbach, O. F. J. Chem. Educ. 1944, 21, 66.
68. Hall, W. T. J. Chem. Educ. 1944, 21, 201.
69. Lehman, A. J. Chem. Educ. 1944, 21, 202.
70. Porges, A. J. Chem. Educ. 1945, 23, 266.
71. McGavock, W. C. J. Chem. Educ. 1945, 32, 269.
72. Standen, A. J. Chem. Educ. 1945, 13, 461
73. Swayze, D. R. J. Chem. Educ. 1963, 40, 269.
74. Swayze, D. R. Ind. Eng. Chem. Fundam. 1964, 3, 269.
75. Missen, R. W. J. Chen. Educ. 1970, 47, 785.
76. Stark, F. M. J. Chem. Educ. 1984, 61, 476.
77. Porter, S. K. J. Chem. Edwc. 1985, 63, 507.
78. Willard, H. H. J. Am. Chem. Soc. 1912, 34, 1480.
79. Jensen, W. B. J. Chem. Educ. 1987, 64, 646.
80. Aris, R; Math, R. H. S. Ind. Eng. Chem. Fundam. 1963, 2, 90 .
81. Schneider, D. R; Reklaitis, G. V. Chem. Eng. Sci. 1975, 30, 243.
82. Tóth, Z. J. Chem. Educ. 1997, 74, 1363
83. Guo, Ch. J. Chem. Educ. 1997, 74, 1365.
84. Grigos, M. A; Wamer, M. E. J. Chem. Ehtc. 1926, 3, 425.
85. Simons, J. H. J. Chem. Edhc. 1926, 3, 1305
86. Jette, E. R; La Mer V. K. I Chem. Educ. 1927, 4, 1021.
87. Jette, E. R; La Mer V. K. J. Chem. Educ. 1927, 4, 1158.
88. Hall, W. T. J. Chem. Educ. 1929, 6, 479.
89. Reinmuth, O. J. Chem. Educ. 1929, 6, 527.
90. Brinkley, S. R. J. Chem. Educ. 1929, 6, 1894.
91. Reinmuth, O. J. Chem. Educ. 1930, 7, 1181.
92. Meldum, W. B. J. Chem. Educ. 1930, 7, 1688.
93. O. Reimnuth, O. J. Chem. Educ. 1930, 7, 1689.
94. Bermett, C. W. J. Chem. Educ. 1935, İ, 189.
95. Morris, K. B. J. Chem. Educ. 1938, 15, 538.
96. Wanderwerf, C. A; Davidson, A. W; Sisler, H. H. J. Chem. Educ. 1945, 23,450
97. Wanderwerf, C. A. J. Chem. Educ. 1945, $25,547$.
98. Bemett, G W. J. Chem. Educ. 1954, 31, 157.
99. Loekwood, K. L. J. Chem. Educ. 1961, 38, 326.
100. Kolb, D. J. Chem. Educ. 1978, 55, 326.
101. Kolb, K. J. Chem. Educ. 1979, 56, 181.
102. Barberá O. Ens. Cien. 1990, \&, 85.
103. Campanario, J. M; Ballesteros, R. Ens. Cien. 1991, 9, 205.
104. Garritz, A; Rincón, C. Educ. Quim. 1996, 7, 190.
105. Ten Hoor, M. J. J. Chem. Educ. 1997, 74, 1367.
106. Glaister, P. J. Chem. Educ. 1997, 74, 1368.
107. Waldbawer, L. J; Thum, W. E. J. Chem. Educ. 1926, 3, 1430.
108. Lochte, H. L. J. Chem. Educ. 1927, 4, 223
109. Park, B. J. Chen. Edic. 1929, 6, 1136
110. Kolb, D. J. Chem. Educ. 1981, 58, 642-645.
111. Pernicone, E. J. Chem. Educ. 1981, 58, 966.
112. Yarroch, W. L. J. Res. Sei. Teach. 1985, 22, 449.
113. Freeman, W. A; Goh, A. K; Chia, L. S; Hart, D. M; Lucas, E. A; Peery, D. J; Subramanian, R; Ten Hoor, M. J. J. Chem. Educ. 1997, 74, 1271.
114. Karslake, W. J. Chem. News 1907, 66, 41.
115. Garcia, A. J. Chem. Edru. 1987, 64, 247.
116. Jolunson, O. C. Chem. Nerts 1880, 42, 51.
117. Stout, R. J. Chem. Edtuc. 1995, 72, 1125.
118. Nelson, R. J. Chem. Ethec. 1997, 74, 1256.
119. Sobkowiak, A. J. Chem. Ettuc. 1997, 74, 1256.
120. Toth, Z. J. Chem. Educ. 1997, 74, 1270.
121. Woolf, A. A. J. Chem. Edac. 1997, 74, 1270.
122. Ludwig, O. J. Chem. Educ. 1997, 74, 1270.
123. Hemdon, W. C. J. Chem. Educ. 1997, 74, 1359.
124. Zimmermanu, J. A. E. J. Chem. Etuc. 1925, 2, 383.
125. Stone, Ch. H. J. Chem. Edru. 1944, 21, 550.
126. Brooks, D. W. J. Chem. Educ. 1987, 64, 53.
127. Kumar, D. D. The Agora 1993, 3, 8.
128. Brooks, D. W. J. Chem. Edtuc. 1995, 72, 233.
129. Cardinali, M. E. J. Chem. Edtc. 1995, 72, 716.
130. Subramanian, R; Goh, N. K; Chia, L. S. J. Chem. Echic. 1995, 72, 894.
131. Ferguson, L. A. J. Chem. Edic. 1996, 73, 1129.
132. Kumar, D. D; White, A. L; Helgeson, S. L. J. Sci. Edic. \& Technol. 1994, 3, 187.
133. Kumar, D.D; Helgeson, S. L. Elect. J. Sci. Educ. 2000, f(4), 1.
134. Niaz, M; Lawson, A. E. J. Res. Sci. Teach. 1985, 13, 41.
135. Moore, E. H. Bull. Amer: Math. Soc. 1920, 26, 394.
136. Penrose, R. Proc. Cambridge Phil. Soc. 1955, 51, 406.
137. Zesgeren, V. F; Storey, S. H. The Computation of Chemical Equibria, Cambridge Univ. Press, London 1970.
138. Smith, W. R; Missen, R W. Chemical Reaction EcquiIhrium Analusis: Theory and Algorithms, Wiley, New York 1982.
139. Risteski, I. B. Mat. \& Technol. 2007, 41, 213.
140. Risteski, I. B. Math. J. Okavanta Univ: 2008, 50, 1.
141. Risteski, I. B. 22nd Oct. Meeting of Min. \& Merall. Collection of Papers, Oct. 1-2, 1990 Bor, 313.
