Synthesis and Anti-HIV-1 Activity of Carbocyclic Versions of Stavudine Analogues Using a Ring-closing Metathesis

Lian Jin Liu, Ok Hyun Ko, and Joon Hee Hong*
BK2 I-Project Team, College of Pharmacy, Chostm Unversity, Gwangiu 501-759, Korea. ${ }^{*}$ E-mal: honghtachosun.ac.kr RecemedApril 25, 2008

Abstract

An efficient synthetic route for carbocyclic versions of stavudine analogues and their evaluation on antiviral activity are described. The construction of an ethynylated quaternary carbon at the 4 '-position of carbocyclic mucleosides was accomplished using Claisen rearrangement of 11 and ring-closing metathesis (RCM) of dienyne $\mathbf{1 4}$ as key transformations. An antiviral evaluation of the synthesized compounds. 20.21.22. and 25 against HIV-I. HSV-1. HSV-2, and HCMV showed that only the guanine analogue $\mathbf{2 5}$ is moderately active against HIV-I in the MT-4 cell line ($\mathrm{EC}_{50}=11.91 \mu \mathrm{~mol}$).

Key Words : Carbocyclic nucleoside. Antiviral agents, Ring-closing metathesis, Claisen rearrangement

Introduction

Replacement of the furanose ring oxygen atom with carbon is of particular interest because the resulting carbocyclic nucleosides ${ }^{\text {l }}$ have greater metabolic stability against chemical or enzymatic hydrolysis." which cleaves the glycosidic bond of nucleosides. Many carbocyclic nucleosides have antiviral and anticancer activity because the cyclopentane ring of these compounds can emulate a furanose moiety. Carbocyclic nucleosides are also potent inhibitors of the cellular enzyme, S-adenosyl- L-homocysteine (AdoHcy) hydrolase. which regulates S-adenosylmethionine (SAM)dependent methylation reactions, and are specific targets for the reversible hydrolysis of the AdoHcy linkage to adenosine and homocysteine. ${ }^{3}$ The recent discovery of olefinic carbocyclic mucleosides. such as carbovir ${ }^{+}$and abacavir. ${ }^{5}$ which are potential anti-HIV agents, has increased interest in the search for novel carbocyclic nucleosides. whereas their side effects ${ }^{6}$ and the emergence of drug-resistant mutants are lasting concems to be solved. ${ }^{7}$
Recent reports that thymidine analogues with 4 -azido 1^{8} and 4'-cyano groups 2^{\prime} show significant inhibitory activity against HIV proliferation have stimulated the synthesis of 4 'substituted nucleoside analogues to lead to the discovery of 4^{1}-ethyny lated stavudine 3^{16} and thiostavudine 4^{11} analogues which turned out to be efficient antiviral and antitumor agents.
Stimulated by these interesting SAR (structure activity relationship). we describe herein the synthesis of a novel class of nucleosides containing 4'-ethynyl carbocyclic nucleosides and their antiviral profile.

Results and Discussion

As depicted in Scheme 1. we hypothesized that ringclosing metathesis (RCM) of proper divinyls 14 . which could be readily synthesized via sequential reactions, such as Claisen rearrangement and Grignard addition starting from ethỵl glycolate 5, would produce ethynylated cyclopentene

15β.

Silyl protection of the alcohol of the commercially available starting material 5 followed by hydrolysis gave carboxylic acid derivative 7 . which was transformed to the Weinreb amide 8 by the treatment of DCC and DMAP coupling reagents. ${ }^{12}$ Conversion of the amide to the propargyl ketone derivative 9 was successful under the usual carbonyl addition conditions (propargy $1 \mathrm{MgBr}, \mathrm{THF}, 0^{\circ} \mathrm{C}$). Treatment of 9 with triethylphosphonoacetate ${ }^{13}$ provided α, β-unsaturated ethyl ester 10 as a cis/trans isomeric mixture. These isomers do not need separating because they merge into one isomer 12 after Claisen rearrangement. Addition of the diisobutylaluminum hydride (DIBALH) to $\mathbf{1 0}$ provided the allylic alcohol 11. which was subjected to a regular Johnson's orthoester Claisen rearrangement ${ }^{\text {l4 }}$ with triethyl orthoacetate to yield the $\gamma \delta$-unsaturated ester 12.

Scheme 1. Synthesis route of aldehyde intermediate 13. Reagents: i) TBDMSCl, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, imidazole; ii) KOH , EtOH: iii) N -methy! hydroxylamine hydrochloride, DCC, DMAP, TEA; iv) propargylmagnesium bromide, THF; v) Triethylphosphonoacetate, NaH, THF; vi) DIBALH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vii) Triethylorthoacetate, propionic acid, overnight, $135-140^{\circ} \mathrm{C}$, viii) DIBALH, toluene, $-78{ }^{\circ} \mathrm{C}$.

1: $R=N_{3}$

3

4

Figure 1. Structures and rationale of target 4'ethyny lated nucleosides.

153

Figure 2. NOE comparisons of compound 15α and 15β.

Direct reduction of the ester $\mathbf{1 2}$ to the aldehyde $\mathbf{1 3}$ was successfully accomplished by slow addition of DIBALH in the toluene solvent system at $-78^{\circ} \mathrm{C}$. The aldehyde 13 was subjected to carbonyl addition by $\mathrm{CH}_{-}=\mathrm{CHMgBr}$ to give divinyl 14 .

Divinyl $1+$ was subjected to standard RCM^{15} conditions using a second-generation Grubbs catalyst to provide the diene metathesis product $\mathbf{1 5} \alpha / \mathbf{1 5} \beta$ as well as enyne metathesis product, which were readily separated by simple silica gel column chromatography. The correct configurations of 15α and 15β were assigned based on NOE comparisons. Upon the irradiation of $\mathrm{C}_{5}-\mathrm{H}$, different NOE pattenn was observed at the protons of compound $15\left[\mathrm{C}_{1}-\mathrm{H}(0.03 \%) \&\right.$ $\left.C_{6}-\mathrm{H} \beta(0.31 \%)\right]$. from those of compound $15\left[\mathrm{C}_{1}-\mathrm{H}(0.08 \%)\right.$ $\left.\& C_{6}-\mathrm{H} \beta(0.29 \%)\right]$ (Figlue 2).

First, we attempted the mesylation of $\mathbf{1 5} \alpha$ because mesylate is an excellent reactive intemediate for the replacement of free hydroxyl groups with nucleoside bases. To our surprise. the mesylate that appeared in the reaction mixture disappeared during the work-up, resulting in decomposition into an unidentifiable byproduct and requiring an alternative coupling method. Alternatively, we turned out attention to Palladium (0)-catalyzed reactions of allylic carbonate. ${ }^{16}$ To this end, cyclopentenol 15β was transformed to 16 using ethyl chloroformate, which was coupled with pyrimidine nucleosidic base (cytosine, thymine, uracil) anions generated by $\mathrm{NaH} / \mathrm{DMSO}$ with use of catalyst [tris(dibenzylidene-acetone)-dipalladium(0)-chloroform] adduct to provide nucleoside analogues 17-19. Removing the silyl protection groups of $\mathbf{1 7 - 1 9}$ was performed by the treatment of tetrabutylammonium fluoride (TBAF) to yield final nucleosides 20-22 (Scheme 2). Similarly. the guanine derivative was synthesized by coupling the same intermediate 16 as used in the preparation of pyrimidine analogues. The silicon protection group of compound 23 was removed by treatment with TBAF to produce compound 24 . Treatment of compound 24 with 2 -mercaptoethanol and sodium methoxide in

Scheme 2. Synthesis route of taregt pyrimidine nucleosides. Reagents: i) vinylMgBr, THF; ii) Grubbs catalyst (II), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii) $\mathrm{ClCO}_{2} \mathrm{Et}$, pyridine, DMAP; iv) pyrimidine nucleosidic bases, $\left.\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}, \mathrm{P}(\mathrm{O}-i-\mathrm{Pr})_{3}, \mathrm{NaH}, \mathrm{THF} / \mathrm{DMSO}, ~ v\right)$ TBAF, THF.

Scheme 3. Synthesis route of taregt purine nucleoside. Reagents: i) 2-amino-6-chloropurine, $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}, \mathrm{P}(\mathrm{O}-i-\mathrm{Pr})_{3}, \mathrm{NaH}, \mathrm{THF} /$ DMSO: ii) TBAF, THF; iii) (a) 2-mecaptoethanol, NaOMe , MeOH, (b) $\mathrm{CH}_{3} \mathrm{COOH}$.
methanol. followed by hydrolysis with acetic acid. gave the desired nucleoside 25 (Scheme 3).

Antiviral activity studies. Compounds. 20. 21. 22. and 25 were tested against HIV-1 (MT-4 cells). HSV-1 (CCL81 cells). HSV-2 (CCL-81 cells). and HCMV (AD-169. Davis cells). Among them, only guanine analogue 25 exhibited moderate antiviral activity against HIV-1 (Table 1): and the thymine analogue 21 showed weak antiviral activity against HCMV. The assay involved the killing of T4-lymphocytes by HIV-1. T4 lymphocytes (MT-4 cell line) were exposed to HIV at a virus-to-cell ratio of approximately 0.05 and treated with the compounds. dissolved in dimethylformamide, at doses ranging from 10^{-8} to 10^{-4}. A complete cycle of virus reproduction is necessary to obtain the required cell killing (incubation at $37^{\circ} \mathrm{C}$ in a 5% carbon dioxide atmosphere for 6 days). Uninfected cells with the compounds served as a toxicity control. whereas the infected and uninfected cells without the compound served as basic control. ${ }^{17}$

Compared to $\mathbf{3}$ and \boldsymbol{t}, it is surprising that their corresponding carbacyclic analog 21 did not show any noticeable activity. Investigation on the cause of this unexpected SAR would be an interesting topic as a guidance for further

Table 1. Antiviral activity of the synthesized compounds

	$\begin{gathered} \mathrm{HIV}-\mathrm{I} \\ \mathrm{EC}_{50} \\ (\text { janol }) \end{gathered}$	$\begin{gathered} \text { HSV-1 } \\ \text { EC }_{50} \\ (\text { /amol }) \end{gathered}$	$\begin{gathered} \mathrm{HSV}-2 \\ \mathrm{EC}_{50} \\ (\mathrm{tanol}) \end{gathered}$	$\begin{gathered} \text { HCMV } \\ \mathrm{EC}_{50} \\ (/ a \mathrm{nol}) \end{gathered}$	$\begin{gathered} \text { cytotoxicity } \\ \mathrm{CC}_{50} \\ \text { (/anol) } \end{gathered}$
20	90	>100	>100	>100	90
21	45.7	98	>100	19.3	98
22	99	>100	>100	99	>100
25	11.91	88	>100	36.4	99
D4T	0.05	ND	ND	ND	20
GCV	ND	ND	ND	0.8	>10
ACV	ND	0.2	ND	ND	>100

D4T: Stavudine: GCV: Ganciclovir: ACV: Acyclovir. ND: Not Determined. $\mathrm{EC}_{50}(\mu \mathrm{M})$: Concentration required to inhibit $50^{\circ} .0$ of the virusinduced cytopathicity: $\mathrm{CC}_{s u}(\mu \mathrm{M})$: Concentration required to reduce cell fiability by 50°.
development of carbacyclic derivatives. In summary. we developed an efficient synthetic method to yield 4'-ethynyl carbocyclic nucleosides starting from ethyl glycolate. Based on this strategy, the syntheses of other nucleosides with different nucleobases are in progress in our laboratory

Experimental Section

Melting points were determined on a Mel-temp II laboratory device and are uncorrected. NMR spectra were recorded on a JEOL 300 Fourier transform; chemical shifts are reported in parts per million (δ) and signals are quoted as s (singlet). d (doublet). t (triplet), q (quartet), m (multiplet). and dd (doublet of doublets). UV spectra were obtained on a Beckman DU-7 spectrophotometer. The elemental analyses were performed using an Elemental Analyzer System (EAll12). TLC was performed on Uniplates (silica gel) purchased from Analtech Co. All reactions were performed under a nitrogen atmosphere unless otherwise specified. Dry dichloromethane. benzene. and pyridine were obtained by distillation from CaH_{s}. Dry THF was obtained by distillation from Na and benzophenone immediately prior to use.
(tert-Butyldimethylsilyloxy)-acetic acid ethyl ester (6): To a solution of ethyl glycolate $5(10.0 \mathrm{~g} .0 .09 \mathrm{~mol})$ and imidazole (8.80 g . 0.14 mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. TBDMSCl (15.9 g .0 .10 mol) was added slowly at $0^{\circ} \mathrm{C}$, and stirred for 5 h at the same temperature. The reaction solvent was evaporated under reduced pressure. The residue was extracted twice with diethyl ether and water. The combined organic layer was dried over anhydrous MgSO_{4}. filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (EtOAc/hexane. 1:20) to give compound $6(19.9 \mathrm{~g} .95 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.12(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{q}, J=6.9 \mathrm{~Hz}$. $2 \mathrm{H}), 1.17(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .0 .81(\mathrm{~s} .9 \mathrm{H}), 0.01(\mathrm{~s} .6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 171.54,61.80 .60 .66,25.69 .18 .35,14.12$. -5.50 .
(tert-Butyldimethylsilyloxy) acetic acid (7): A solution of $\mathrm{KOH}(2.57 \mathrm{~g} .59 .5 \mathrm{mmol})$ in $\mathrm{EtOH}(20 \mathrm{~mL})$ was slowly added to a solution of $6(10.0 \mathrm{~g} .45 .7 \mathrm{mmol})$ in $\mathrm{EtOH}(200$ mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at it and
concentrated under reduced pressure. The residue was dissolved in water (200 mL) and carefully neutralized with $c-\mathrm{HCl}$ solution to $\mathrm{pH} 3-4$. The solution was extracted with EtOAc two times. The organic layer was washed with brine and dried over anhydrous MgSO_{4}. filtered, and evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane. 1:3) to give $7(7.84 \mathrm{~g}, 90 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 4.12(\mathrm{~s} .2 \mathrm{H})$, $0.82(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 171.02 .61 .90$. 25.55. 18.71. -5.57.

2-(tert-Butyldimethylsilyloxy)- N -methoxy- N -methylacetamide (8): To a solution of acid derivative $7(5.00 \mathrm{~g}$. 26.2 mmol) in a anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$, N.O-dimethylhydroxylamine hydrochloride (3.06 g .31 .4 mmol), DCC $(6.48 \mathrm{~g}, 31.4 \mathrm{mmol})$, DMAP (317 mg .2 .60 mmol) and triethylamine (3.18 g .31 .4 mmol) were sequentially added to the reaction mixture. The solution was stirred ovemight at rt . After addition of methanol (5 mL) and acetic acid (5 mL), the mixture was stirred for 1 h and neutralized with saturated aqueous NaHCO_{3} solution. The resulting solid was filtered off through a short pad of Celite and the filtrate was concentrated in vacuum. The resulting residue was purified by silica gel column chromatography (EtOAc/hexane, 1:1.5) to give Weinreb amide $8(5.2 \mathrm{lg} .85 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl 3.300 MHz$) \delta 4.48(\mathrm{~s} .2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.05$ $(\mathrm{s}, 3 \mathrm{H}) .0 .80(\mathrm{~s} .9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 171.63, 61.00, 52.63. 31.67, 25.54. 18.49. -5.61.

1-(tert-Butyldimethylsilyloxy)-but-3-yn-2-one (9): Ethyny lmagnesium bromide (32.8 mL .0 .5 M solution in THF) was slowly added to a solution of Weinreb amide 8 (3.20 g .13 .7 mmol) in dry THF (70 mL) at $0^{\circ} \mathrm{C}$ and stirred for 5 h at the same temperature. The mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(16 \mathrm{~mL})$. and the reaction mixture was slowly warmed to room temperature. The mixture was extracted with EtOAc ($2 \times 100 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4}. filtered. and evaporated. The residue was purified by silica gel column chromatography (EtOAc/hexane. $1: 10$) to give $9(1.87 \mathrm{~g} .69 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.34(\mathrm{~s}, 2 \mathrm{H}) .2 .98(\mathrm{~s} .1 \mathrm{H})$, 0.85 (s. 9H) 0.01 (s. 6 H): ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 196.31, 82.87. 79.43, 73.43. 25.76. 18.34, -5.58: Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 60.56$: H, 9.15 . Found: C. 60.45 ; H, 9.07 .
(E) and (Z)-3-(tert-Butyldimethylsilyloxymethyl)-pent-2-en-4-ynoic acid ethyl ester (10): To a suspension of sodium hydride (0.40 g .16 .7 mmol) in distilled THF (100 mL) was added drop wise triethyl phosphonoacetate (3.74 g . 16.7 mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2 h . The ketone $9(3.31 \mathrm{~g}, 16.7 \mathrm{mmol})$ was added to this mixture and stirred for 2 h . The solution was neutralized with $\mathrm{AcOH}(3 \mathrm{~mL})$ and poured into $\mathrm{H}_{2} \mathrm{O}(150$ mL) and extracted with EtOAc. The organic layer was washed with brine and dried over anhydrous MgSO_{4}. filtered and evaporated. The residue was purified by silica gel column chromatography ($\mathrm{EtOAc} / \mathrm{hexane} .1: 12$) to give 10 ($3.22 \mathrm{~g} .72 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 6.22(\mathrm{~s} . \mathrm{lH}), 4.50(\mathrm{~s}, 2 \mathrm{H}) .4 .21(\mathrm{q} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .3 .09(\mathrm{~s}$. $1 \mathrm{H}) .1 .31(\mathrm{t} . J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) .0 .84(\mathrm{~s}, 9 \mathrm{H}) .0 .02(\mathrm{~s}, 6 \mathrm{H})$.
(E) and (Z)-3-(tert-Butyldimethylsilyloxymethyl)-pent-2-en-4-yn-1-ol (11): DIBALH (35.2 mL . 1.0 M solution in hexane) was slowly added to a solution of $\mathbf{1 0}(4.50 \mathrm{~g} .16 .7$ $\mathrm{mmol})$ in $\mathrm{CH}_{-} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. and stirred for 1.5 h at the same temperature. Methanol (35 mL) was added to the mixture. The mixture was stirred at room temperature for 2 h , and the resulting solid was filtered through a Celite pad. The filtrate was concentrated under vacuum and the residue was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ hexane. 1:7) to give alcohol 11 ($3.41 \mathrm{~g} .90 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.17(\mathrm{t} . J=1.8 \mathrm{~Hz}, \mathrm{IH})$. $4.31(\mathrm{~d} . J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .4 .08(\mathrm{~s} .2 \mathrm{H}) .3 .10(\mathrm{~s}, 1 \mathrm{H}), 0.86(\mathrm{~m}$. $9 \mathrm{H}), 0.01(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 139.74,135.52$. 123.81. 83.65. 79.05. 64.79. 60.90. 25.78. 18.56, -5.50
(\pm)-3-(tert-Butyldimethylsilyloxymethyl)-3-ethynyl-pent4 -enoic acid ethyl ester (12): A solution of ally lic alcohol $11(5.50 \mathrm{~g}, 24.3 \mathrm{mmol})$ in triethyl orthoacetate $(150 \mathrm{~mL})$ and 0.2 mL of propionic acid was heated at $135-140^{\circ} \mathrm{C}$ overnight with stirring for the distillation of ethanol. The excess triethyl orthoacetate was distilled off and the residue was purified by silica gel column chromatography ($\mathrm{EtOAc} /$ hexane. $1: 25$) to give $12(6.05 \mathrm{~g} .84 \%)$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 5.92$ (d. $\left.J=9.8 \mathrm{~Hz} .1 \mathrm{H}\right), 5.80(\mathrm{~d}$. $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}) .5 .3 \mathrm{I}(\mathrm{d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}) .4 .02(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}) .3 .64(\mathrm{~d}, J=9.6 \mathrm{~Hz} .1 \mathrm{H}), 3.51(\mathrm{~d} . J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$. $2.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, \mathrm{IH}) .2 .24(\mathrm{~d} . J=7.8 \mathrm{~Hz} .1 \mathrm{H}) .1 .98(\mathrm{~s}$. $1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 171.75$. $143.54,114.50,80.76 .77 .65,69.34,61.32 .49 .35,25.76$. 18.76. 13.76, -5.76; Anal caled. for $\mathrm{C}_{16} \mathrm{H}_{8} 8 \mathrm{O}_{3} \mathrm{Si}$: C. 64.82 : H. 9.52. Found: C. 65.03; H. 9.67.
(\pm)-3-(t-Butyldimethylsilyloxymethyl)-3-ethynyi-pent-4-enal (13): To a solution of 12 (2.50 g .8 .43 mmol) in toluene (40 mL), DIBALH ($6.18 \mathrm{~mL}, 1.5 \mathrm{M}$ solution in toluene) was added slowly at $-78^{\circ} \mathrm{C}$. and stirred for 15 minutes at the same temperature. To the misture. methanol (7 mL) was added. The mixture was stirred at room temperature for 1.5 h , and the resulting solid was filtered through a Celite pad. The filtrate was concentrated under vacuum and the residue was purified by silica gel column chromatography (EtOAchexane. $1: 20$) to give $13(1.29 \mathrm{~g} .61 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.80(\mathrm{~m}, \mathrm{IH})$. $5.85(\mathrm{~d} . J=10.0 \mathrm{~Hz} .1 \mathrm{H}) .5 .70(\mathrm{~d} . J=9.4 \mathrm{~Hz} .1 \mathrm{H}) .5 .33(\mathrm{~d} . J$ $=8.0 \mathrm{~Hz} .1 \mathrm{H}) .3 .79(\mathrm{~s} .2 \mathrm{H}) .2 .93(\mathrm{~mm} .2 \mathrm{H}), 2.01(\mathrm{~s} .1 \mathrm{H}), 0.83$ (s. 9 H$) .002$ (s. 6 H): ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.78 .143 .32$. 113.76, 81.39. 78.61. 69.55, 48.43, 25.78. 18.72. -5.76; Anal. calcd for $\mathrm{C}_{1+4} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si} \cdot 0.5 \mathrm{Hx}: \mathrm{C} .69 .33: \mathrm{H}, 10.26$. Found: C. 69.49: H. 10.40.
(rel)-(3R and 3S,5S)-5-(t-Butyldimethylsilyloxymeth-yl)-5-ethynyl-hepta-1,6-dien-3-ol (14): To a solution of 13 $(4.20 \mathrm{~g} .16 .6 \mathrm{mmol})$ in dry THF $(100 \mathrm{~mL})$ was slowly added vinyl magnesiumbromide (19.9 mL .1 .0 M solution in THF) at $-78{ }^{\circ} \mathrm{C}$. After +h , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 mL) and water (100 mL) was sequentially added. and the reaction mixture was slowly warmed to rt . The mixture was extracted with EtoAc ($2 \times 120 \mathrm{~mL}$). The combined organic layer was dried over MgSO_{4}. filtered, and evaporated. The residue was purified by silica gel column chromatography (EtOAc/
hexane, $1: 18$) to give $1+(3.50 \mathrm{~g} .75 \%)$ as colorless oil: ${ }^{1} \mathrm{H}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 6.08-5.70(\mathrm{~m} .2 \mathrm{H}) .5 \cdot 41-5.17(\mathrm{~m}$, $4 \mathrm{H}) .4 .27(\mathrm{~m}, \mathrm{IH}) .3 .52(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.57(\mathrm{~m}$, $2 \mathrm{H}) .0 .82(\mathrm{~m}, 9 \mathrm{H}), 0.02(\mathrm{~m} .6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $142.91,140.54,114.76$. 114.64 . 112.12 . 111.99. 88.32. 73.45. 68. 57. 68.43. 67.09. 41.12, 41.35, 30.06, 25.43(m), 18.70. $-5.71(\mathrm{~m})$; Anal. calcd. for $\mathrm{C}_{1}\left[\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{Si} 0.5 \mathrm{EtOAc}: \mathrm{C}\right.$, 66.62: H. 9.94. Found: C. 66.68: H, 9.96.
(ree)-(1R,45)-4-(t-Butyldimethylsilyloxymethyl)-4-ethyn-yl-cyclopent-2-enol (15 β) and ($r e l$)-(1S, +5$)$)-4-(t-Butyldi-methylsilyloxymethyl)-4-ethynyl-cyclopent-2-enol (15α): A second-generation Grubbs catalyst (153 mg 0.18 mmol) was added to a solution of $\mathbf{1 4}(1.55 \mathrm{~g} .5 .54 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The reaction mixture was refluxed overnight and cooled to room temperature. The misture was concentrated in a vacuum, and the residue was purified by silica gel column clromatography (EtOAc/hexane, $1: 10$) to give cyclopentenol $15 \beta(293 \mathrm{mg} .21 \%$) and $15 \alpha(307 \mathrm{mg}$. 22%) as colorless oils. Cyclopentenol 15β : ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \mathrm{d} 6.00-5.92(\mathrm{~m}, 5 \mathrm{H}) .4 .54(\mathrm{~m}, \mathrm{IH}) .3 .68(\mathrm{~d}, J=$ $9.4 \mathrm{~Hz} . \mathrm{IH}) .3 .51$ (d. $J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) .2 .30(\mathrm{dd} . J=13.2,6.8$ $\mathrm{Hz} .1 \mathrm{H}), 1.99(\mathrm{~s} .1 \mathrm{H}), 1.59(\mathrm{dd}, J=8.4 .6 .8 \mathrm{~Hz}, \mathrm{IH}) .0 .84(\mathrm{~s}$, $9 \mathrm{H}) .0 .01(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 141.10. 134.65 . 80.76. 78.49, 73.35. 68.99. $52.54,45.38,25.65$. 18.57, -5.62 ; Anal. calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 66.61$; H. 9.58 . Found: C, 66.70; H, 9.68. Cyclopentenol 15α : ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 5.79-5.68(\mathrm{~m} .2 \mathrm{H}), 4.82(\mathrm{dd}, J=6.6$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$). 3.37 (s, 2 H). 2.28 (dd. $J=13.4,7.2 \mathrm{~Hz} .1 \mathrm{H}$), $2.01(\mathrm{~s}, 1 \mathrm{H}) .1 .48(\mathrm{dd} . J=13.4 .7 .2 \mathrm{~Hz}, 1 \mathrm{H}), 0.83(\mathrm{~s} .9 \mathrm{H})$, $0.01(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 140.97,132.82 .89 .57$, 75.54. 71.69. 69.12. 52.43, 44.28, 25.76, 18.72. -5.78; Anal. calcd. for $\mathrm{C}_{41} \mathrm{H}_{24} \mathrm{O}_{2}$ Si: C. $66.61 ;$ H. 9.58 . Found: C, 66.48 : H. 9.51 .
(rel)-(1R,4S)-1-Ethoxy carbonyloxy-4-(t-butyldimeth-ylsilyloxymethyl)-4-ethynyl-cyclopent-2-ene (16): Ethyl chloroformate (1.65 mL .17 .3 mmol) and DMAP (102 mg . $0.84 \mathrm{mmol})$ were added to a solution of $\mathbf{1 5} \beta(2.18 \mathrm{~g} .8 .65$ mumol) in anlydrous pyridine (15 mL). The reaction mixture was stirred overnight at room temperature. The reaction mixture was quenched with saturated NaHCO_{3} solution (1.5 mL) and concentrated in vacuum. The residue was extracted with $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}$ and the organic layer was dried over MgSO_{4}. filtered, and concentrated. The residue was purified by silica gel column chromatography (EtOAc/hexane, 1:12) to give $16(2.1 \mathrm{~g} .75 \%)$ as a colorless syrup: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 6.41-6.36(\mathrm{~m}, 2 \mathrm{H}), 5.50(\mathrm{dd}, J=6.4 .1 .4 \mathrm{~Hz}$, $1 \mathrm{H}) .4 .29(\mathrm{q} . J=7.4 \mathrm{~Hz} .2 \mathrm{H}), 3.86(\mathrm{~d} . J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (d. $J=9.6 \mathrm{~Hz} .1 \mathrm{H}$). 2.43 (dd. $J=14.0 .7 .8 \mathrm{~Hz} .1 \mathrm{H}$). 2.17 (dd. $J=14.0 .6 .8 \mathrm{~Hz} .1 \mathrm{H}) .2 .09(\mathrm{~s} .1 \mathrm{H}) .1 .31(\mathrm{t} . J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. 0.84 (s. 9 H). 0.01 (s. 6 H). ${ }^{13} \mathrm{C}^{\mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 154.95$. $143.99,128.51,88.72,84.03 .73 .58,71.12,64.52 .50 .78$. 41.49. 25.59. 18.67. 14.62. -5.57. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si} \cdot 1.0$ EtOAc: C, 61.13: H, 8.79. Found: C, 61.11: H, 8.64.
(rel)-(1'R,4'S)-9-[4-(t-Butyldimethylisilyloxymethyl)-4-ethynyl-cyclopent-2-en-1-yl] cytosine (17): Cytosine (109 mg. 0.98 mmol) was added to pure $\mathrm{NaH}(23.5 \mathrm{mg} .0 .98$
mmol) in anhydrous DMSO (6.00 mL). The reaction mixture was stirred for 30 min at $50-55^{\circ} \mathrm{C}$ and cooled to room temperature. Simultaneously, $\mathrm{P}(\mathrm{O}-i-\mathrm{Pr}))^{(0.07 \mathrm{~mL}, ~} 0.22$ mmol) was added to a solution of $\left.\mathrm{Pd}_{2}(\mathrm{dba})\right)_{3} \mathrm{CHCl}_{3}(4.60$ mg. 2.50 mmol) in anhydrous THF (5.0 mL), which was stirred for 30 min . To the nucleosidic base solution of DMSO was sequentially added catalyst solution of THF and 16 (286 mg .0 .88 nmmol) dissolved in anhydrous THF (5 mL). The reaction mixture was stirred ovemight at refluxing temperature and quenched with water (3 mL). The reaction solvent was removed in a vacuum. The residue was purified by silica gel colunn chromatography ($\mathrm{MeOH} /$ Hexane/ EtOAc. 0.1:1:5) to give 17 (118 $\mathrm{mg} .39 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} .300 \mathrm{MHz}\right) \delta 7.3 \mathrm{I}(\mathrm{d} . J=7.0 \mathrm{~Hz}, \mathrm{IH}), 6.06$ $(\mathrm{d}, J=5.4 \mathrm{~Hz} . \mathrm{lH}), 5.96(\mathrm{~m}, \mathrm{IH}) .5 .54(\mathrm{~d}, J=7.0 \mathrm{~Hz}, \mathrm{lH})$. $5.39(\mathrm{dd}, J=6.4 .1 .4 \mathrm{~Hz} .1 \mathrm{H}), 3.81(\mathrm{~d} . J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (d, $J=9.0 \mathrm{~Hz} .1 \mathrm{H}) .2 .67$ (dd. $J=13.8 .8 .0 \mathrm{~Hz} .1 \mathrm{H}$). 2.22 (dd. $J=13.8 .6 .6 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\mathrm{~s} .1 \mathrm{H}) .0 .85(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 6 \mathrm{H})$: $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3\right) ~ \delta 165.72 .156 .67,1+5.39,144.21$. 127.88, 93.71. 89.56. 71.42, 69.54, 55.62. $42.32,25.67,18.66$. -5.61 ; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si} \cdot 1.0 \mathrm{MeOH}$: C. 57.62 : H. 7.89. N, 10.61. Found: C, 57.42: H, 7.79; N. 10.73.
(rel)-(1'R, $\left.+^{\prime} S\right)$-9-[4-(t-Butyldimethylsilyloxymethyl)-4-ethynyl-cyclopent-2-en-1-yl] thymine (18): The thymine nucleoside analogue 18 was synthesized from 16 as described for 17 : yield $30 \%:{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) δ 9.29 (br s, IH). $7.15(\mathrm{~s} . \mathrm{lH}) .6 .11(\mathrm{~d} . J=5.2 \mathrm{~Hz}, \mathrm{IH}) .6 .00-$ $5.93(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{~m} . \mathrm{lH}) .3 .76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{IH}) .3 .60(\mathrm{~d}$. $J=9.0 \mathrm{~Hz} .1 \mathrm{H}), 2.59(\mathrm{dd}, J=14.0 .7 .8 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{dd} . J=$ $14.0,6.8 \mathrm{~Hz} . \mathrm{H}) .2 .03(\mathrm{~s}, 1 \mathrm{H}) .1 .55(\mathrm{~s} .3 \mathrm{H}), 0.86(\mathrm{~s} .9 \mathrm{H})$. $0.02(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.21 .151 .70,143.59$. $142.29,128.21,109.39 .88 .43,73.39,69.43,56.19 .41 .54$. 25.60. 18.59. 12.30. -5.62: Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}$: C. 63.30: H. 7.83; N. 7.77. Found: C. 63.43: H, 7.70: N. 7.62 .
(rel)-(1'R, $\left.\boldsymbol{t}^{\prime} S\right)-9-[4-(t-$ Butyldimethylsilyloxymethyl)-_-ethynyl-cyclopent-2-en-1-yl] uracil (19): The uracil nucleoside analogue 19 was obtained from 16 as described for 17: yield 28% : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3 .} .300 \mathrm{MHz}\right) \delta 9.35$ (br s. $1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.8 \mathrm{~Hz} .1 \mathrm{H}), 6.05(\mathrm{dd} . J=5.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$. $5.93-5.88(\mathrm{~m} .2 \mathrm{H}) .5 .68-5.59(\mathrm{~m} .2 \mathrm{H}) .3 .69(\mathrm{~d} . J=9.2 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .51(\mathrm{~d} . J=9.2 \mathrm{~Hz} .1 \mathrm{H}) .2 .40(\mathrm{dd} . J=14.0 .7 .8 \mathrm{~Hz}$. 1H). 2.09-2.00 (m, 2H). 0.85 (s.9H). $0.01(\mathrm{~s}, 6 \mathrm{H}) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.86 .151 .21 .147 .30 .143 .50,127.39,101.47$. 89.38. 74.32, 70.55, 57.78, 43.19. 25.67. 18.59. -5.73; Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si} 0.5$ EtOAc: C, 61.50 ; H. 7.74 ; N . 7.17. Found: C, 61.44: H. 7.61; N, 7.16.
(rel)-(1'R,4'R)-9-[4-(Hydroxymethyl)-4-ethynyl-cyclo-pent-2-en-1-yl] cytosine (20): TBAF (0.43 mL .1 .0 M solution in THF) was added to a solution of $17(99.0 \mathrm{mg}$. $0.27 \mathrm{mmol})$ in THF (5 mL) at $0^{\circ} \mathrm{C}$. The mixture was stirred overnight at room temperature and concentrated. The residue was purified by silica gel column chromatography ($\mathrm{MeOH} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{I} .5$) to give $\mathbf{2 0}$ ($50.0 \mathrm{mg} .74 \%$) as a white solid: mp $164-167{ }^{\circ} \mathrm{C}:{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6} .300 \mathrm{MHz}\right) \delta 7.39(\mathrm{~d}, J=$ 7.2 Hz .1 H), 6.99 (br d. 2 H), 6.08 (dd. $J=5.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$. $5.97(\mathrm{~d} . J=5.6 \mathrm{~Hz} .1 \mathrm{H}) .5 .56-5.49(\mathrm{~m} .2 \mathrm{H}) .4 .97(\mathrm{t} . J=5.4$

Hz. 1 H), $3.68(\mathrm{~d} . J=9.2 \mathrm{~Hz}, \mathrm{IH}) .3 .59(\mathrm{~d}, J=9.2 \mathrm{~Hz} .1 \mathrm{H})$, 2.5 I (dd. $J=14.0 .8 .2 \mathrm{~Hz} .1 \mathrm{H}) .2 .06$ (m. 2H); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 165.42,155.78,146.49,143.93,128.37$, $92.37,88.54 .73 .43 .68 .99,54.32,43.41$: Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .57 .82 ; \mathrm{H}, 6.06$: N, 16.85. Found: C. 57.99: H. 5.97: N, 16.80.
(rel)-(1'R, $+^{\prime} R$)-9-[4-(Hydroxymethyl)-+-ethyny]-cyclo-pent-2-en-1-yl] thymine (21): The thymine carbocyclic nucleoside analogue 21 was synthesized from 18 by the procedure described for 20 : yield 69% mp $160-163{ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (DMSO $-d_{6}, 300 \mathrm{MHz}$) $\delta 11.19$ (br s, 1 H), 7.18 (s. 1 H), $6.13(\mathrm{~d} . J=5.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .98-5.91(\mathrm{~m}, 2 \mathrm{H}) .5 .38(\mathrm{~m} .1 \mathrm{H})$, $4.90(\mathrm{t} . J=5.4 \mathrm{~Hz}, \mathrm{lH}) .3 .65(\mathrm{~d}, J=9.2 \mathrm{~Hz} .1 \mathrm{H}), 3.52(\mathrm{~d} . J=$ $9.2 \mathrm{~Hz} . \mathrm{IH}$). 2.42 (dd. $J=14.2,7.6 \mathrm{~Hz} .1 \mathrm{H}), 2.01-1.95(\mathrm{~m}$, 2 H). 1.52 (s. 3 H): ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 164.56 .151 .49$. $144.50,143.79,128.51 .108 .90 .89 .31,72.49,69.77 .54 .54$, $43.48,12.28$: Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}:$ C. $63.40: \mathrm{H}$, 5.73 ; N, 11.38. Found: C. 63.53 ; H, 5.92: N. 11.43.
(rel)-(1'R, $\boldsymbol{t}^{\prime} R$)-9-[4-(Hydroxymethyl)-+-ethyny]-cyclo-pent-2-en-1-yl] uracil (22): The uracil nucleoside analogue 22 was synthesized from 19 using the deprotection procedure described for $\mathbf{2 0}$: yield 75%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 300$ $\mathrm{MHz}) \delta 11.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .7 .21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d} . J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}) .6 .01-5.93(\mathrm{~m} .2 \mathrm{H}), 5.59-5.50(\mathrm{~m}, 2 \mathrm{H}) .3 .64$ (d. $J=9.2 \mathrm{~Hz} .1 \mathrm{H}) .3 .55(\mathrm{~d}, J=9.2 \mathrm{~Hz}, \mathrm{lH}) .2 .38(\mathrm{dd}, J=$ $14.0 .7 .6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 1 \mathrm{H}), 1.90(\mathrm{dd} . J=14.0,6.8 \mathrm{~Hz}$, $\mathrm{IH}) .{ }^{13} \mathrm{C}$ NMR (DMSO- c_{6}) $\delta 164.10$. 152.54, 147.88. 144.21, 128.02, 102.08. 89.54. 73.45, 69.29, 57.47, 44.38; Anal. calcd. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot 0.5 \mathrm{MeOH}: \mathrm{C} .60 .47$; H. $5.68: \mathrm{N}$. 11.28. Found: C, 60.55 : H, 5.72; N. 11.09.
(rel)-(1'R,+'S)-9-[t-(t-Butyldimethylsilyloxymethyl)-t-ethynyl-cyclopent-2-en-1-yl] 2-amino-6-chloropurine (23): The purine nucleoside analogue 23 was synthesized with the condensation reaction method described for $\mathbf{1 7}$. yield 28% : ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6} .300 \mathrm{MHz}$) $\delta 9.95(\mathrm{~s}, 1 \mathrm{H})$, $6.08(\mathrm{~d}, J=5.6 \mathrm{~Hz} . \mathrm{IH}), 5.98$ (dd. $J=4.8 .1 .4 \mathrm{~Hz} .1 \mathrm{H}) .5 .47$ (dd. $J=5.2 .1 .8 \mathrm{~Hz} .1 \mathrm{H}), 3.62(\mathrm{~d}, J=9.2 \mathrm{~Hz} . \mathrm{IH}), 3.54(\mathrm{~d} . J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}) .2 .47$ (dd. $J=14.0 .7 .6 \mathrm{~Hz} .1 \mathrm{H}) .2 .04-1.92(\mathrm{~m}$. 2H). 0.86 (s. 9H). 0.02 (s. 6 H): ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) δ 159.20, 154.31. 151.10, 143.89. 143.11, 126.54. 125.23, $90.02 .74 .42 .69 .54,58.21,43.58,25.72,18.58 ., 5.62$: Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{35} \mathrm{ClN}_{5} \mathrm{OSi}$: C. 56.49 . $\mathrm{H}, 6.49$. $\mathrm{N}, 17.34$. Found: C, 56.58: H, 4.35; N, 17.27.
(rel)-(1'R,4'S)-9-[4-(Hydroxymethyl)-4-ethynyl-cyclo-pent-2-en-1-yl] 2-amino-6-chloropurine (24): The nucleoside analogue 24 was obtained from 23 as described for $\mathbf{2 0}$: yield 62% : ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6} .300 \mathrm{MHz}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H})$, $6.10(\mathrm{dd}, J=5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}) .6 .02(\mathrm{dd} . J=5.2 .1 .6 \mathrm{~Hz}$, 1H). $5.50(\mathrm{~m} .1 \mathrm{H}) .4 .91(\mathrm{t} . J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .3 .58$ (d. $J=$ $9.2 \mathrm{~Hz} .1 \mathrm{H}) .3 .49(\mathrm{~d} . J=9.2 \mathrm{~Hz} .1 \mathrm{H}) .2 .50(\mathrm{dd} . J=14.2 .7 .8$ Hz .1 H). 2.07-1.99 (m. 2H). 0.86 (s. 9 H): ${ }^{13} \mathrm{C}$ NMR (DMSOd6) δ 159.65. 153.98, 150.87. 143.21. 142.79, 125.42, 124.21, 89.64, 73.43. 69.11, 57.42, 42.28, Anal. calcd. for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{5} \mathrm{O} 0.5 \mathrm{MeOH}: \mathrm{C} .53 .03: \mathrm{H} .4 .61$: N. 22.91 . Found: C. 52.90: H, 4.56; N, 22.80.
(rel)-(1'R,4'S)-9-[4-(Hydroxymethyl)-4-ethynyl-cyclo-pent-2-en-1-yl] guanine (25): 2-Mercaptoethanol (0.14
$\mathrm{mL} .1 .90 \mathrm{mmol})$ and $\mathrm{NaOMe}(1.76 \mathrm{~mL}, 1.76 \mathrm{mmol} .1 .0 \mathrm{M}$ solution in MeOH) was added to a solution of compound 24 ($95.6 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{MeOH}(10 \mathrm{~mL})$, and heated overnight under reflux. After cooling. the reaction mixture was neutralized with a few drops of glacial AcOH and concentrated under reduced pressure. The residue was purified by silica gel colunn chromatography ($\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. 1:4) to give compound 25 ($53.0 \mathrm{mg}, 60 \%$) as a solid: mp 180-183: UV ($\mathrm{H}_{2} \mathrm{O}$) $\hat{\lambda}_{\max } 253.0 \mathrm{~mm} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{k}. $300 \mathrm{MHz}) \delta 10.80(\mathrm{br} \mathrm{s} \mathrm{LH})$..7 .95 (s. IH). 6.56 (br s. 2 H). $6.87(\mathrm{~d}, J=6.2 \mathrm{~Hz}, \mathrm{IH}) .6 .14(\mathrm{~d}, J=5.6 \mathrm{~Hz}, \mathrm{IH}) .6 .07(\mathrm{dd} . J$ $=5.0 .1 .4 \mathrm{~Hz} . \mathrm{lH}) .5 .48(\mathrm{~m}, \mathrm{IH}) .4 .93(\mathrm{t} . J=5.4 \mathrm{~Hz}, \mathrm{IH})$. $3.42(\mathrm{~d}, J=9.0 \mathrm{~Hz}, \mathrm{IH}) .3 .3 \mathrm{I}(\mathrm{d}, J=9.0 \mathrm{~Hz}, \mathrm{IH}) .2 .45(\mathrm{dd} . J$ $=14.0,8.4 \mathrm{~Hz} .1 \mathrm{H}$), 2.05-1.98 (m. 2 H) ${ }^{13} \mathrm{C}$ NMR (DMSOdi) $\delta 157.58,154.32 .152 .57,143.56,136.36,124.98$. 117.39, 88.98. 72.87. 69.32, 58.43. 43.65: Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{NS}_{5} \mathrm{O}_{2} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}: \mathrm{C} .53 .97$: H. 5.23; N, 24.21. Found: C. 54.11; H. 5.30: N, 24.17.

References

1. (a) Crimmins. M. T. Terrahedron 1998. 54. 9229. (b) Ariona. O: Gomez. A. M.: Lopez. J. C.: Plumet. J. Chem. Rev. 2007. 107. 1919.
2. Herdewijn. P.: De Clereq. E.: Balzarini. J.: Vanderhaeghe. H. J. Med. Chem. 1985. 28. 550.
3. (a) Palmer, J. L.: Abeles, R. H. J. Biof. (Them. 1979. 254, 1217. (b)

Ueland. P. M. Pharmacol. Rev: 1982. 34. 223.
4. Vince. R.: Hua. M. J. Med Chem. 1990. 33.17.
5. (a) Daluge. S. M.: Good. S. S.: Faletto. M. B.: Miller. W. H.: St Clair. M. H.: Boone. L. R.: Tisdale. M.: Parry. N. R.: Reardon. J. E.: Donnsife. R. E.: Averett. D. R.: Krenitsky. T. A. Antmicrob. Agents Chemother 1997, 11. 1082. (b) Dobkin. J. F. Infect. Med. 1999. 17. 625.
6. Parker. W. B.; Cheng, Y.-C. d. NHH. Res. 1994, 6. 57.
7. Chatis. P. A.: Crumpacker. C. S. Animicrob. Agents Chemother. 1992. 36. 1589.
8. Maag. H.: Rydzewski. R. M.: McRoberts. M. J.: Crawford-Ruth. D.; Verhevden, J. P; Prisbe, E. J. J. Med. Chem. 1992. $35,1+40$.
9. O-Yang. C.: Wu, H. Y.; Fraser-Smith. E. B.; Walker. K. A. M. Tetrahedron Lett. 1992. 33. 37.
10. Haraguchi. K.: Takeda. S.: Tanaka. H.: Nitanda. T:: Baba. M.: Dutschman. G. E.: Cheng. Y.-C. Bioorg Med Chem. Lett. 2003. 13. 3775 .
11. Kumamoto, H.: Nakai, T.: Haraguchi. K.: Nakamura, K. T.: Tanaka. H: Baba. M.; Cheng, Y-C. J. Ifed. Chem. 2006, 49, 7861.
12. Nahm. S.: Weinreb. S. M. Tebahedron Lett. 1981, 22. 3815.
13. Haines. D. R.: Tseng. C. K. H.: Marquez. V. E. J. Med. Chen. 1987. 30.943.
14. (a) Ziegler. F. E. Chem. Rev: 1988. 88. 1423, (b) Johtson. W. S.: Werthmann, L.: Bartlett, W. R.; Brockson. T. J.; Li, T. T.; Faulkner. D. J.: Peterson, M. R. J. Am. Chem. Soc. 1970. 92. 741.
15. (a) Nicolaou. K. C.: Bulger. P. G.; Sarlah. D. Angew Chem. Iht. Ed. 2005.44 .4490 . (b) Kim. A.: Hong. T. H. Bull. Koream Chen. Soc. 2007. 28. 1545. (c) Teong. L. S.: Lee. T. A. Antmiral Chen. Chenother 2004. 15. 235.
16. (a) Trost. B. M.: Kallander, L. S. J. Org. Chem. 1999, 64. 5427. (b) Trost. B. M;- Shi. Z. J. Am. Chem. Soc. 1996, 118, 3037. (c) Li. H.; Hong, J. H. Bull. Korean Chem. Soc. 2007, $28,1645$.
17. Weislow. O. S.: Kiser. R.: Fine. D. L.: Bader. J.: Shoemaker. R. H.: Boyd. M. R. J. Natl. Cancer Hist. 1989.81. 577.

