DOI QR코드

DOI QR Code

Correlation of the Rates of Solvolysis of Diphenylthiophosphinyl Chloride Using an Extended form of the Grunwald-Winstein Equation

  • Koh, Han-Joong (Department of Science Education, Chonju National University of Education) ;
  • Kang, Suk-Jin (Department of Science Education, Chonju National University of Education) ;
  • Kevill, Dennis N. (Department of Chemistry and Biochemistry, Northern Illinois University)
  • 발행 : 2008.10.20

초록

Rate of solvolysis of diphenylthiophosphinyl chloride in ethanol, methanol, and aqueous binary mixtures incorporating ethanol, methanol, acetone, 2,2,2-trifluoroethanol (TFE) or 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) are reported. Solvolyses were also carried out in TFE-ethanol mixtures. For five representative solvents, studies were made at several temperatures and activation parameters determined. The 29 solvents gave a reasonably precise extended Grunwald-Winstein equation plot, correlation coefficient (R) of 0.933, which improved to 0.983 when the four TFE-ethanol points were excluded. The sensitivities (l = 1.00 and m = 0.64) were similar to those obtained for dimethyl phosphorochloridate and phosphorochloridothionate and diphenylphosphinyl chloride (1). As with the four previously studied solvolyses, an $SN_2$ pathway is proposed for the solvolyses of diphenylthiophosphinyl chloride. The activation parameters, ${\Delta}H^{\neq}$ and ${\Delta}S^{\neq}$, were determined and they are also in line with values expected for an $S_N2$ reaction.

키워드

참고문헌

  1. Corbridge, D. E. C. Phosphorus-An Outline of its Chemistry, Biochemistry and Uses, 5th ed.; Elsevier: Amsterdam, 1995; Chapter 11
  2. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000
  3. Hudson, R. F. Structure and Mechanism on Organophosphorus and Chemistry; Academic Press: New York, 1965
  4. Thatcher, G. R. J.; Luger, R. K. Adv. Phys. Org. Chem. 1989, 25, 99 https://doi.org/10.1016/S0065-3160(08)60019-2
  5. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
  6. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591 https://doi.org/10.1021/ja00336a046
  7. Kirby, A. J.; Varroglis, A. G. J. Am. Chem. Soc. 1967, 89, 415 https://doi.org/10.1021/ja00978a044
  8. Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268 https://doi.org/10.1021/ja00212a040
  9. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890 https://doi.org/10.1021/ja00214a037
  10. Ba- Saif, S. A.; Waring, M. A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115 https://doi.org/10.1021/ja00178a040
  11. Hengge, A. C.; Edens, W. A.; Elsing, H. J. Am. Chem. Soc. 1994, 116, 5045 https://doi.org/10.1021/ja00091a003
  12. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680 https://doi.org/10.1021/jo981160k
  13. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1999, 765
  14. Hoque, Md. E. U.; Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B.-S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797 https://doi.org/10.5012/bkcs.2007.28.10.1797
  15. Bentley, T. W.; Ebdon, D.; Llewellyn, G.; Abduljaber, M. H.; Miller, B.; Kevill, D. N. J. Chem. Soc. Dalton Trans. 1997, 3819
  16. Kevill, D. N.; Carver, J. S. Org. Biomol. Chem. 2004, 2, 2040 https://doi.org/10.1039/b402093f
  17. Kevill, D. N.; Miller, B. J. Org. Chem. 2002, 67, 7399 https://doi.org/10.1021/jo020467n
  18. Kevill, D. N.; Koh, H. J. J. Phys. Org. Chem. 2007, 20, 88 https://doi.org/10.1002/poc.1124
  19. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  20. Grunwald, E.; Winstein, S. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  21. Bentley, T. W.; Llewellyn, G. Prog. Phys. Org. Chem. 1990, 17, 121 https://doi.org/10.1002/9780470171967.ch5
  22. Kevill, D. N.; D'Souza, M. J. J. Chem. Res. Synop. 1993, 174
  23. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  24. Koo, I. S.; Bentley, T. W.; Kang, D. H.; Lee, I. J. Chem. Soc., Perkin Trans. 2 1991, 296
  25. Kevill, D. N.; Anderson, S. W. J. Org. Chem. 1991, 56, 1845 https://doi.org/10.1021/jo00005a034
  26. Kevill, D. N. In Advances in Quantitative Structure-Property Relationships; Charton, M., Ed.; JAI Press: Greenwich, CT, 1996, Vol. 1, pp 81-115
  27. Koh, H. J.; Kang, S. J.; Kevill, D. N. Phosphorus, Sulfur, and Silicon 2008, 183, 364 https://doi.org/10.1080/10426500701734943
  28. Bentley, T. W.; Ebdon, D. N. J. Phys. Org. Chem. 2001, 14, 759 https://doi.org/10.1002/poc.425
  29. Koh, H. J.; Han, K. L.; Lee, H. W.; Lee, I. J. Org. Chem. 1998, 63, 9834 https://doi.org/10.1021/jo9814905
  30. Neimysheva, A. A.; Savchik, V.; Ermolaeva, M. V.; Knunyants, I. L. Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl Transl) 1968, 2104
  31. Ketelaar, J. A. A.; Gresmann, H. R.; Koopmans, K. Recl. Trav. Chim. Pays-Bas. 1952, 71, 1253 https://doi.org/10.1002/recl.19520711214
  32. Chlebowski, J. F.; Coleman, J. E. J. Biol. Chem. 1974, 247, 7192
  33. Cook, R. D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. Can. J. Chem. 1986, 64, 1630 https://doi.org/10.1139/v86-269
  34. Bel'skii, V. E.; Bezzubova, N. N.; Akamsin, V. D.; Eliseenkov, V. N.; Rizpolozhenskii, N. I.; Puduvik, A. N. Dokl. Akad. Nauk. SSSR 1971, 197, 85; Eng. Trans. p 171
  35. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
  36. Douglas, K. T.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1976, 515
  37. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823 https://doi.org/10.1021/jo070171n
  38. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213 https://doi.org/10.1139/v86-037
  39. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61 https://doi.org/10.2174/1385272053369349
  40. Omakor, J. E.; Onyido, I.; VanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324
  41. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178 https://doi.org/10.1021/ja035167h
  42. Hondal, R. J.; Bruzik, K. S.; Zhao, Z,; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477 https://doi.org/10.1021/ja964217y
  43. Lee, I.; Sung, D. D.; Uhm, T. S.; Ryu, Z. H. J. Chem. Soc., Perkin Trans. 2 1989, 1697
  44. Halmann, M. Phosphorus Sulfur 1988, 40, 251 https://doi.org/10.1080/03086648808072922
  45. Dostrovsky, I.; Halmann, M. J. Chem. Soc. 1953, 502 https://doi.org/10.1039/jr9530000502
  46. Dostrovsky, I.; Halmann, M. J. Chem. Soc. 1956, 1004 https://doi.org/10.1039/jr9560001004
  47. Corriu, R. J. P. Phosphorus Sulfur 1986, 27, 1
  48. Lanneau, G. F. Phosphorus Sulfur 1986, 27, 43 https://doi.org/10.1080/03086648608072757
  49. Westheimer, F. H. Acc. Chem. Res. 1968, 1, 70 https://doi.org/10.1021/ar50003a002
  50. Hall, H. K. Jr., J. Org. Chem. 1956, 21, 248 https://doi.org/10.1021/jo01108a607
  51. Wadsworth, W. Jr.; Horton, H. J. Am. Chem. Soc. 1970, 92, 3785 https://doi.org/10.1021/ja00715a042
  52. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc., Perkin Trans. 2 1997, 1721
  53. Kevill, D. N.; Kim, J. C.; Kyong, J. B. J. Chem. Res. Synop. 1999, 150
  54. Kevill, D. N.; D'Souza, M. J. J. Org. Chem. 1998, 63, 2120 https://doi.org/10.1021/jo9714270
  55. Kyong, J. B.; Park, B. C.; Kim, C. B.; Kevill, D. N. J. Org. Chem. 2000, 65, 8051 https://doi.org/10.1021/jo005630y
  56. Kevill, D. N.; D'Souza, M. J. Collect. Czech. Chem. Commun. 1999, 64, 1790 https://doi.org/10.1135/cccc19991790
  57. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753
  58. Gordon, I. M.; Maskill, H.; Ruasse, M.-F. Chem. Soc. Rev. 1989, 18, 123 https://doi.org/10.1039/cs9891800123
  59. Koo, I. S.; Lee, I.; Oh, J. U.; Yang, K. Y.; Bentley, T. W. J. Phys. Org. Chem. 1993, 6, 223 https://doi.org/10.1002/poc.610060405
  60. Lee, I.; Koh, H. J.; Park, Y. S.; Lee, H. W. J. Chem. Soc., Perkin Trans. 2 1993, 1575
  61. Kevill, D. N.; Kolwyck, K. C.; Weitl, F. L. J. Am. Chem. Soc. 1970, 92, 7300 https://doi.org/10.1021/ja00728a012
  62. Bentley, T. W.; Bowen, C. T.; Parker, W.; Watt, C. I. F. J. Chem. Soc., Perkin Trans. 2 1980, 1244
  63. Rappoport, Z.; Kaspi, J. J. Am. Chem. Soc. 1974, 96, 4518 https://doi.org/10.1021/ja00821a027

피인용 문헌

  1. Correlation of the Rates on Solvolysis of 2,2,2-Trichloroethyl Chloroformate Using the Extended Grunwald-Winstein Equation vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1729
  2. Correlation of Rates of Solvolysis of Diphenylacetyl Chloride Using Extended Grunwald-Winstein Equation vol.36, pp.10, 2015, https://doi.org/10.1002/bkcs.10465
  3. Studies of Solvolyses of 1,4-Benzodioxan-6-Sulfonyl Chloride by Extended Grunwald-Winstein Equation vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10573
  4. Studies of Solvolyses of Di-n-butyl Phosphorochloridate by Extended Grunwald-Winstein Equation vol.59, pp.5, 2015, https://doi.org/10.5012/jkcs.2015.59.5.373
  5. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates vol.16, pp.12, 2015, https://doi.org/10.3390/ijms160510601
  6. Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate vol.30, pp.10, 2008, https://doi.org/10.5012/bkcs.2009.30.10.2413
  7. Correlation of the Rates of Solvolyses of Benzhydryl Halides Using an Extended Grunwald-Winstein Equation vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.378
  8. Sn2/E2 Branching in Protic Solvents: A Mechanistic Study vol.30, pp.7, 2009, https://doi.org/10.5012/bkcs.2009.30.7.1535
  9. Correlation of the Rates of Solvolysis of Chlorodiphenylphosphine Using the Extended Grunwald-Winstein Equation vol.185, pp.4, 2008, https://doi.org/10.1080/10426500903012478
  10. Product-Rate Correlations for Solvolyses of 2,4-Dimethoxybenzenesulfonyl Chloride vol.35, pp.1, 2008, https://doi.org/10.5012/bkcs.2014.35.1.51
  11. Rate and Product Studies of 5-Dimethylamino-Naphthalene-1-Sulfonyl Chloride under Solvolytic Conditions vol.35, pp.8, 2008, https://doi.org/10.5012/bkcs.2014.35.8.2285
  12. Solvolysis Reaction Kinetics, Rates and Mechanism for Phenyl N-Phenyl Phosphoramidochloridate vol.35, pp.8, 2008, https://doi.org/10.5012/bkcs.2014.35.8.2465
  13. Analysis of the Solvolysis of Anthraquinone-2-Carbonyl Chloride in Various Mixed Solvents vol.62, pp.4, 2018, https://doi.org/10.5012/jkcs.2018.62.4.265