Journal of the Korean Chemical Society 2008. Vol. 52, No. 3 Printed in the Republic of Korea

단 신

HOOCI-H₂O Cluster의 구조와 결합에너지에 대한 ab initio 연구

김영미 · 성은모* 충북대학교 과학교육학부 (2008, 5, 16 접수)

Ab Initio Study of the Structure and Binding Energy of HOOCl-H₂O Cluster

Young-Mi Kim and Eun-Mo Sung*

Department of Science Education, Chungbuk National University, Cheongju 361-763, Korea (Received May 16, 2008)

요 약. HOOCI-H₂O cluster에 대하여 안정한 구조와 결합에너지를 MP2/6-311G(d,p), MP2/6-311G(2d,2p)의 방법으로 계산하였고 vibrational frequency계산을 하여 HOOCI의 vibrational frequency와 비교하였다. Skew HOOCI-H₂O cluster가 가장 안정한 cluster로 나타났고 결합에너지는 46-48 kJ/mol 정도이며 trans HOOCI-H₂O cluster의 경우도 이보다 불안정하나 비교적 큰 결합에너지를 갖는 것으로 나타났다.

주제어: HOOCI-H₂O cluster, HOOCI-H₂O 결합에너지

ABSTRACT. The geometrical structure, binding energy and vibrational frequencies of HOOCl- H_2O cluster were investigated with MP2/6-311G(d,p) and MP2/6-311G(2d,2p) methods. The most stable conformer is skew HOOCl- H_2O cluster and the binding energy was 46–48 kJ/mol. The trans HOOCl- H_2O cluster is less stable than skew form, but the binding energy is big enough to stablize the complex. The vibrational frequencies of skew and trans HOOCl- H_2O cluster were calculated and compared with the spectrum of HOOCl.

Keywords: HOOCI-H2O Cluster, Binding Energy of HOOCI-H2O

서 론

성충권내에서 염소를 포함하는 분자와 물 분자 사 이의 상호작용에 관한 연구는 오랫동안 상당한 관심 의 대상이었고 특히 CI과 CIO를 포함하는 화합물(HCI, HOCI, HCIO: 등)은 오존충 파괴에 원인이 되는 염소 라디칼의 생성에 중요한 화합물들로서 주목을 받아 왔다.¹⁵

HOCl의 경우는 그 구조에 대한 연구**뿐 아니라 HOCl-H₂O cluster에 대한 연구도 이론적으로 많이 진 행되어 왔다. Escribano⁸ 등은 HOCl(H₂O)_n, n=1-4, clusters에 대한 ab initio 계산으로 이 분자들의 안정 한 구조, 결합 에너지, 진동 스펙트럼등을 얻었다.

이 이전에도 Dibble과 Francisco[®]에 의해 HOCI-H₂O

complex의 안정한 구조를 비교적 큰 basis sets을 사 용하여 얻었다. Re, Osamura, Suzuki 그리고 Schaefer III¹⁰는 HCl(H₂O)_n cluster, n=1-5에 대하여 density fuctional 방법과 Hartree-Fock 방법으로 계산하였다.

HOOCI의 경우 H₂O와의 complex에 대한 연구는 알 려진 것이 없고 HOOCI 분자에 대한 이론 연구가 많이 진행되어 왔다. Lee와 Rendell¹¹은 CCSD(T)¹² 방법으 로 HOOCI의 안정한 구조와 dipole moment, harmonic vibrational frequencies등을 계산하였고 HOOCI의 생 성열을 계산하였다. 그 후 Francisco등¹³은 HCIO₂의 이성질체들에 대한 연구 결과에서 HOOCI, HOCIO, HCIO₂ 중 가장 안정한 형태의 분자가 HOOCI 임을 밝혔다. CCSD(T) 방법으로 6-311G(d,p)¹⁴ basis set을 이용하여 계산한 이성질체들의 에너지에서 각 이성 질체의 상대적 안정화 에너지를 얻었다.

DFT 방법과 MP2 방법에 의한 HClO₂의 potential energy surface를 통하여 Peyerimhoff등¹⁵도 HOOCl이 안정함을 밝혔다. 그 후 Zheng등¹⁶은 HOOX→HOXO →HXO₂(X=Cl, Br, I)의 이성질화 반응을 DFT 방법 으로 연구하여 전이 상태의 구조를 밝히고 그 에너지 를 계산하였다. 최근 Maciel등¹⁷은 ROOR'(R, R'=H, F, Cl, NO, CN) 분자들의 peroxidic bond에 대한 양자역 학 계산을 보고하였다. 여기에서도 HOOCl의 구조와 에너지에 대하여 같은 경향을 보였다. 이 이외에도 Alkorta등¹⁵에 의한 HOOCl 분자의 racemization barrier 를 계산한 결과가 나와있다.

이 논문에서는 HOOCI의 안정한 구조를 계산하여 그 결과를 앞의 연구와 비교해보고 HOOCI과 H₂O의 cluster에 대하여 그 특성을 연구하고자 한다.

계산 및 결과

Gaussian 03를 이용하여 MP2 방법으로 계산하였고 basis set으로는 6-311G(d,p), 6-311G(2d,2p)등을 시용

Table 1. Equilibrium structures for HCIO- isomers¹

하였다. 먼저 HClO2의 여러 이성질체 중에서 가장 안 정한 형태로 알려진 HOOCl에 대하여 구조를 최적화 시켰다. 그 결과 Table 1과 같은 결과를 얻었다.

위의 결과에서 볼 수 있듯이 HOOCl의 상대적 안 정도는 skew 형태가 가장 안정하고 그 다음이 trans 그리고 cis의 순서인 것을 알 수 있다. 가장 안정한 skew 형태와 trans 형태의 에너지 차이는 16.46 kJ/mol 이고 cis 형태와의 차이는 32.37 kJ/mol 이다. 이 상대 적 안정도는 이전의 연구 결과와 일치하는 것이다. *Fig.* 1에서는 HOOCl의 이 세 가지 형태를 나타내고 있다.

위의 안정한 HOOCI의 구조를 토대로 이 HOOCI에

Fig. 1. Structures of the HOOCl isomers.

Molecule	Coordinate	MP2/6-311G**	MP2/6-311G(d,p) ^b	MP2/6-311G(2d,2p) ^b	MP2/6-31G(d) ^b
	НО	0.967	0.966	0.965	0.980
	00	1.410	1.408	1.423	1.437
HOOCI	CIO	1.753	1.751	1.750	1.739
skew	HOO	101.2	101.3	100.7	100.6
	CIOO	109.2	109.2	108.1	108.1
	HOOCI	89.6	89.7	88.2	90.2
Energ	y (a.u.)	-610.21259(0) ^c	-610.29910	-610.37913	-610.11503
	HO	0.966	0.966	0.965	0.981
	00	1.462	1.462	1.745	1.488
HOOCI	CIO	1.705	1.705	1.706	1.701
trans	HOO	96.7	96.7	96.6	96.3
	CIOO	104.8	104.8	103.8	103.8
	HOOCI	180.0	180.0	180.0	180.0
Energ	y (a.u.)	-610.20632(3.93) ^s	-610.29286	-610.37219	-610.01937
	HO	0.966	0.966	0.965	0.980
	00	1.451	1.451	1.465	1.478
HOOCI	CIO	1.722	1.722	1.720	1.717
cis	HOO	103.2	103.2	102.4	103.3
	CIOO	109.8	109.8	108.6	109.6
	HOOCI	0.0	0.0	0.0	0.0
Energ	y (a.u.)	-610.20026(7.74) ^s	-610.28376	-610.36896	-610.10302

"Bond distances are in angstroms and bond angles in degrees and energies in a.u.,

⁵Taken from ref 13.

^cRelative energies in kcal/mol

2008, Vol. 52, No. 3

H₂O가 결합한 cluster의 구조와 에너지를 알아보았다.

가장 안정한 형태인 skew HOOCI에 H₂O가 결합한 HOOCI-H₂O cluster에 대하여 먼저 구조의 최적화로 가장 안정한 complex형태를 찾아보았다. H₂O가 HOOCI로 접근할 때 HOOCI의 H에 H₂O의 O가 접근 하여 complex를 이를 것으로 보고 이 형태의 cluster 에 대한 계산을 하였다. 이러한 사실은 Dibble등에 의 한 HOCI-H₂O cluster 연구에서 밝혀진 것으로 여러 가지 접근 경로 중 HOCI 의 H와 H₂O의 O가 결합하 는 경로가 가장 안정한 에너지를 갖는 것으로 나타났 다.⁹ 우선 HOOCI에 O가 접근하는 방향에 따른 에너 지변화를 살펴보았다. *Fig.* 2에서 보여주고 있는 것처 럼 H₂O의 O가 HOOCI의 HOO와 같은 평면에 있을 때와 같은 평면에 있지 않을 때 에너지 변화를 보 면 같은 평면에 있을 때 더 안정화됨을 보여준다.

같은 평면상에서 HOOCI의 OH와 H:O의 O가 이루 는 각을 변화시켜 최적화 시켰다. 그 결과 CIOOH의 OH와 H:O의 O가 직선상에 있지 않고 약간 굽은 형 태가 됨을 알 수 있다. 이 각에서 CIOOH의 OOH에 대한 H:O의 OH가 갖는 이면각을 살펴보면 아래 Fig. 3와 같이 나타난다. 이 그림에서 syn과 anti형태 를 볼 수 있는데 최적의 에너지는 anti보다 syn형태가 더 안정함을 알 수 있다. 이렇게 최적화된 skew CIOOH-H:O cluster의 구조를 Fig. 4와 Table 2에 나타내었다.

Fig. 2. Several conformers of the skew HOOCl $-H_2O$ cluster. (a), (b) are the conformations, of which O atom of H_2O is out of plane of HOO plane. And the conformation (c) has O atom of H_2O in same plane of HOO.

Fig. 3. Syn and anti conformer of the skew HOOCl-H₂O cluster.

Fig. 4. The optimized structure for skew HOOCI-H₂O cluster.

Table 2. The optimized structure of skew HOOCI-H2O cluster

	MP2/	MP2/	MP2/
	6-311g(d,p)	6-311g(2d,2p)	6-311g++g(d,p)
СЮ	1.768	1.763	1.752
00	1.400	1.418	1.408
OH,	0.979	0.979	0.979
H _a …O	1.778	1.806	1.809
$OH_{\rm b}$	0.960	0.961	0.961
CIOO	109.6	108.5	109.6
OH _a	100.2	99.3	100.4
OHO	163.6	158.5	164.1
$H_{\rm s}OH_{\rm b}$	108.4	105.0	112.7
$H_{\mathfrak{b}}OH_{\mathfrak{b}}$	103.5	103.6	104.2
CIOOH _a	87.1	86.5	89.0
OLH…OO	-13.0	-10.3	15.5
$OH_{a} \cdots OH_{b}$	41.2	28.6	40.1
$OH_a \cdots OH_b$	-71.9	-77.4	-81.7
energy	-686.49433	-686.58129	-686.51521
zero-point energy	0.04235	0.04239	

"Hydrogen atom on HOOCL "Hydrogen atoms on H₂O. "Bond distances are in angstroms and bond angles in degrees, and energies in a.u.

이 Table에서 보는 바와 같이 HOOCI-H₂O cluster 에서 OH…O가 이루는 각이 161±2°로 직선보다 약간 굽은 형태를 보이며, H₂O의 두 H는 앞의 그림에서 보이는 데로 anti 형태보다 syn 형태가 안정함을 볼 수 있다.

Trans HOOCI의 경우도 trans HOOCI-H₂O cluster의 구조의 최적화로 안정한 cluster의 형태를 찾아보았다. *Toble 3*는 trans HOOCI-H₂O cluster의 안정한 구조를 나타낸다. 이 구조에서 보면 H₂O는 trans HOOCI의 O쪽으로 약간 굽은 구조를 보이며 H₂O의 두 H는 HOOCI의 OO에 대해 anti가 아닌 syn 구조를 보인다. 이 cluster의 경우 HOOCI…O가 한 평면상에 있으며 두 H가 평면을 중심으로 양쪽으로 뻗쳐 있는 구조를 보인다.

Table 4에는 cis HOOCI-H2O cluster의 구조를 MP2/

Journal of the Korean Chemical Society

Table 3. The optimized structure of trans HOOCl - H-O cluster			
	MP2/6-311G(d,p)	MP2/6-311G(2d,2p)	
CIO	1.708	1.709	
00	1.459	1.474	
OHa	0.978	0.978	
H ₁ …O	1.782	1.816	
OH,	0.960	0.959	
CIOO	105.3	104.3	
OOH	96.1	95.3	
OH'O	171.4	162.9	
H_1OH_b	112.6	102.1	
H_bOH_b	103.8	103.8	
CIO…OH	180.0	180	
OO…H3O	171.4	162.9	
OH,OH,	57.4	52.7	
	-57.4	-52.7	
energy	-686.48679	-686.57265	
zero-point energy	0.04169	0.04653	

^aHydrogen atom on HOOCL ^aHydrogen atoms on H₂O.

Bond distances are in angstroms and bond angles in degrees, and energies in a.u.

Table 4. The optimized structure of cis HOOCl-H₂O cluster^e

	CIO	1.723	OOH	103.3
	00	1.452	$OH_{2}O$	156.0
MP2/6-	OH_{a}	0.966	ClOOH_	0.0
311G(d , p)	H _a …O	1.768	OOH2O	180.0
	OH,	0.959	OHOH,	60.0
	CIOO	109.9		-60.0
energy	-686.47647			

"Hydrogen atom on HOOCL "Hydrogen atoms on H₂O. "Bond distances are in angstroms and bond angles in degrees, and energies in a.u.

6-311G(d, p)만으로 최적화시킨 구조를 나타내었다. Cis HOOCI-H-O cluster의 경우 cis HOOCI구조에서 H-O는 Cl에서 먼 바깥쪽으로 굽은 구조를 나타낸다. Fig. 5에 이와 같은 trans HOOCI-H-O cluster와 cis HOOCI-H-O cluster 분자의 구조를 나타내었다. 이 그 림에서는 trans form의 OH-O가 일직선상에 있는 것 처럼 보이나 Table 3에서 볼 수 있는 것처럼 실제는 약간 굽은 구조이다.

Skew HOOCI-H₂O cluster와 trans HOOCI-H₂O cluster의 vibrational frequency와 intensity를 계산한 결과가 *Table* 5 에 나와 있다. 이 결과를 HOOCI의 vibrational frequency 와 비교하였다. Skew HOOCI-H₂O cluster의 vibrational frequency가 HOOCI보다 대부분 낮게 나타났으나 OOH bend와 OO stretch mode에서 약간 높게 나타났음을

Fig. 5. Optimized structures of trans, and cis HOOCI-H₂O clusters.

볼 수 있다. 반면 trans HOOCl-H₂O cluster의 vibrational frequency는 OH, stretch mode를 제외하고는 다른 mode 의 경우, HOOCl의 vibrational frequencies보다 더 높 게 나타났다.

HOOCI-H₂O cluster의 결합 energy를 다음과 같이 계산하여 그 결과를 *Table* 6에 나타내었다.

 $\triangle E = E(HOOCl-H_2O \text{ cluster}) - [E(HOOCl) - E(H_2O)]$

Skew HOOCI-H₂O의 결합에너지가 가장 크고 trans 나 cis는 이보다 낮음을 알 수 있다. 따라서 skew HOOCI-H₂O가 가장 안정한 complex를 형성함을 볼 수 있다. cis의 경우 현저히 낮은 결합에너지를 보인다.

결 론

HOOCI-H-O cluster의 안정한 구조와 결합에너지를 알아본 결과 skew HOOCI-H-O cluster가 가장 안정하 게 나타났으며 trans HOOCI-H₂O는 이보다 높은 에 너지 상태이긴 하나 비교적 큰 결합에너지를 보이며 complex 형성의 가능성을 보여주었다.

Skew HOOCI-H-O cluster의 경우 HOCI-H-O cluster 와 비교해 보면 HOCI-H₂O의 경우도 OH…O angle이 171=3.°로 약간 굽은 구조이고 H₂O의 두 H가 syn과 anti의 구조를 보이며 에너지는 비슷하나 syn이 약간 더 낮음을 보여준다. 이러한 결과가 HOCI-H₂O의 경 우와 일치함을 볼 수 있다. 결합에너지는 HOCI-H₂O 의 경우 zero-point correction를 하기 전에 43.8 kJ/mol 로 나타났으며 zero-point correction 후 34.3 kJ/mol로 skew HOOCI-H₂O의 46.6 kJ/mol보다 좀 낮음을 볼 수 있다. complex 형성의 H…O distance가 skew HOOCI-H₂O의 경우 1.78~1.81A로 나타났으며 HOCI-H₂O의 경우도 1.77-1.81A로 거의 일치함을 알 수 있다. CI-O 김영미 · 성은모

Table 5. Vibrational frequencies and intensities of skew HOOC1 - H2O cluster and HOOC1

Molecula	Approximate vibrational	Harmonic frequencies(cm ⁻¹) and IR Intensities		
Molecule	mode	MP2/6-311G(d,p)	MP2/6-311G(2d,2p)	
	OH _a stretch	3586 [558]	3539 [485]	
	OOH, bend	1554 [53]	1565 [55]	
skew	OO stretch	913 [98]	881 [70]	
HOOCI-H ₂ O	CIOO bend	609 [17]	619 [14]	
	ClO stretch	349 [65]	362 [6]	
	H_aOH_b bend	1662 [52]	1684 [56]	
	OH _a stretch	3609 [750]	3564 [642]	
	OOH, bend	1524 [53]	1522 [54]	
trans	OO stretch	901 [4]	882 [4]	
HOOCI-H ₂ O	CIOO bend	699 [5]	697 [4]	
	ClO stretch	413 [16]	405 [29]	
	H_aOH_b bend	1660 [53]	1681 [64]	
		MP2/6-31G(d)	CCSD(T)/TZ2P	
	OH _a stretch	3669 [37]	3744 [38]	
	OOH bend	1418 [60]	1399 [46]	
HOOCI	OO stretch	870[41]	835 [30]	
	CIOO bend	685 [17]	633 [20]	
	ClO stretch	379 [23]	361 [19]	

"Hydrogen atom on HOOCl. "Hydrogen atoms on H₂O. "Harmonic frequencies taken from ref. 13

Table 6. The total optimized energy and binding energy of HOOCI - H2O cluster

		Total energy(a.u.)	Binding energy(kJ/mol)
drau: UOOCI U.O	MP2/6-311G(d,p)	-686.49433	46.6
SKEW HOULI-H2U	MP2/6-311G(2d,2p)	-686.58129	48.3
	MP2/6-311G(d,p)	-686.48679	43.3
	MP2/6-311G(2d,2p)	-686.57265	43.8
eis HOOC1-H ₂ O	MP2/6-311G(d,p)	-686.47647	32.1

distance는 HOCI-H₂O의 경우 1.71Å로 skew HOOCI-H₂O는 이보다 훨씬 긴 1.77Å을 보이고, trans HOOCI-H₂O는 1.71Å으로 비슷해진다. HOOCI-H₂O cluster의 vibrational frequency는 HOOCI의 vibrational frequency 와 비슷하나 mode에 따라 조금씩 차이를 보인다.

이와 같이 HOOCI-H₂O cluster는 skew HOOCI-H₂O 의 경우 가장 안정한 complex 형성을 보이며 그 구조 는 HOCI-H₂O와 유사하나 결합에너지는 그보다 큰 안 정한 상태임을 알 수 있다.

이 논문은 2006년도 충북대학교 학술연구 지원사 업의 연구비 지원에 의하여 연구되었음.

인용문헌

1. Solomon, S; Garcia, R. R.; Rowland, F. S.; Wuebbles,

D. J. Nature, 1986, 321, 755.

- Molina, M. J.; Tso, T. L.; Molina, L. T.; Wang, F. C. Y. science, 1987, 238, 1253.
- Molina, L. T.; Molina, M. J. J. Phys. Chem. 1978, 82, 2410.
- 4. Kroes, G. J.; Clary, D. C. J. Phys. Chem. 1992, 96, 7079.
- Jalbout, A. F.; Solimannejad, M. J. Mol. Structure, 2003, 626, 87.
- Flowers, B. A.; Francisco, J. S. J. Phys. Chem. A, 2001, 105, 494.
- Zou, S.; Skokov, S.; Bownam, J. M. J. Phys. Chem. A, 2001, 105, 2423.
- Ortiz-Repiso, M.; Escribano, R.; Gomez, P. C. J. Phys. Chem. A, 2000, 104, 600.
- Dibble, T. S.; Francisco, J. S. J. Phys. Chem. 1995, 99, 1919.
- 10. Re, S.; Osamura, Y.; Suzuki, Y.; Schaefer, H. F., III J. Chem. Phys. 1998, 109, 973.

Journal of the Korean Chemical Society

- 11. Lee, T. J.; Rendell, A. P. J. Phys. Chem. 1993, 97, 6999.
- Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. Chem. Phys. Lett., 1989, 157, 479.
- Francisco, J. S.; Sander, S. P.; Lee, T. J.; Rendell, A. P. J. Phys. Chem. 1994, 98, 5644.
- 14. Krishnan, R.; Binkley, J. S.; Seeger, R; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
- 15. Sumathi, R.; Peyerimhoff, S. D. J. Phys. Chem. A, 1999,

103, 7515.

- Li, X.; Zeng, Y.; Meng, L.; Zheng, S. J. Phys. Chem. A, 2007, 111, 1530.
- Maciel, G. S.; Biteneourt, A. C. P.; Ragni, M.; Aquilanti, V. J. Phys. Chem. A, 2007, 111, 12604.
- Zborowski, K.; Alkorta, I.; Elguero, J. J. Phys. Chem. A, 2006, 110, 7247.