DOI QR코드

DOI QR Code

Selectivity of between K+ and Na+ Ions to 12-Crown-4: QSPR Analysis by a Monte Carlo Simulation Study

  • Kim, Hag-Sung (Department of Environmental & Living Chemistry, Ulsan College)
  • Published : 2008.02.20

Abstract

The solvent effects on the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and Dlog Ks (the difference of stability constant of binding) have been investigated by a Monte Carlo simulation of statistical perturbation theory (SPT) in several solvents. Comparing the relative free energies of binding of K+ and Na+ ions to 12-crown-4, in CH3OH of this study with experimental works, there is a good agreement among the studies. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of K+ and Na+ ions to 12-crown-4. We noted that DN(donor number) dominates the differences in relative solvation Gibbs free energies of K+ and Na+ ions and DN dominates the negative values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4 and p* (Kamlet-Tafts solvatochromic parameters) dominates the positive values in differences in the stability constant (Dlog Ks) as well as the relative free energies of binding of K+ and Na+ ions to 12-crown-4.

Keywords

References

  1. Michaux, G.; Reisse, J. J. Am. Chem. Soc. 1982, 104, 6895 https://doi.org/10.1021/ja00389a002
  2. Perdersen, C. J. J. Am. Chem. Soc. 1967, 89, 2495, 7017 https://doi.org/10.1021/ja01002a035
  3. Perdersen, C. J. Science 1988, 241, 536 https://doi.org/10.1126/science.241.4865.536
  4. Chiarizia, R.; Horwitz, E. P.; Dierz, M. L. Solvent Extraction and Ion Exchange 1992, 10, 313, 337 https://doi.org/10.1080/07366299208918108
  5. Frazier, R.; Wai, C. M. Talanta 1992, 39, 211 https://doi.org/10.1016/0039-9140(92)80022-6
  6. Lehn, J.-M. Angew. Chem., Int. Ed. Engl. 1988, 27, 123
  7. Kozak, R. W.; Waldmann, T. A.; Atcher, R. W.; Gansow, O. A. Trends Biotechnol 1985, 4, 359
  8. Wang, J.; Kollman, P. A. J. Am. Chem. Soc. 1998, 120, 11106 https://doi.org/10.1021/ja980464l
  9. Florian, J.; Warshel, A. J. Phys. Chem. B 1999, 103, 10282 https://doi.org/10.1021/jp992041r
  10. Allen, M. P.; Tidelsley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, 1987
  11. Simkin, B. Y.; Sheikhet, I. I. Quantum Chemical and Statistical Theory of Solution: A Comprehensive Approach; Ellis Horwood: London, 1995
  12. Schulz, W. W.; Bray, L. A. Sep. Sci. Technol. 1987, 22, 191 https://doi.org/10.1080/01496398708068948
  13. Valleau, J. P.; Torrie, G. M. In Statistical Mechanics, Part A.; Berne, B. J., Ed.; Plenum: New York, 1977; p 169
  14. Jorgensen, W. L. J. Phys. Chem. 1983, 87, 5304 https://doi.org/10.1021/j150644a002
  15. Rebertus, D. W.; Berne, B. J.; Chandler, D. J. Chem. Phys. 1979, 70, 3395 https://doi.org/10.1063/1.437871
  16. Mezei, M.; Mehrotra, P. K.; Beveridge, D. L. J. Am. Chem. Soc. 1985, 107, 2239 https://doi.org/10.1021/ja00294a005
  17. Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 2974 https://doi.org/10.1021/ja00296a024
  18. Bayly, C. I.; Kollman, P. A. J. Am. Chem. Soc. 1994, 16, 697
  19. Tembe, B. L.; McCammon, J. A. Comput. Chem. 1984, 8, 281 https://doi.org/10.1016/0097-8485(84)85020-2
  20. Kollman, P. A. Chem. Rev. 1993, 93, 2395 https://doi.org/10.1021/cr00023a004
  21. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  22. Kim, H. S. J. Phys. Chem. B 2002, 106, 11579 https://doi.org/10.1021/jp021190y
  23. Kim, H. S. Chem. Phys. Lett. 2001, 346, 135 https://doi.org/10.1016/S0009-2614(01)00954-X
  24. Kim, H. S. Phys. Chem. Chem. Phys. 2000, 2, 1919 https://doi.org/10.1039/b000737o
  25. Kim, H. S. Bull. Kor. Chem. Soc. 2003, 23, 751
  26. Jorgensen, W. L. BOSS, Version 4.5; Yale University: New Haven, CT, 2003
  27. Izatt, R. M.; Bradshow, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J. Chem. Rev. 1985, 85, 271 https://doi.org/10.1021/cr00068a003
  28. Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. J. Org. Chem. 1998, 63, 4305 https://doi.org/10.1021/jo980046z
  29. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302 https://doi.org/10.1021/jp991115w
  30. Kim, H. S. Chem. Phys. 2003, 287, 253 https://doi.org/10.1016/S0301-0104(02)00996-5
  31. Kim, H. S. J. Phys. Chem. B 2004, 108, 11753 https://doi.org/10.1021/jp038021d
  32. Kim, H. S. Chem. Phys. Lett. 2000, 317, 553; 321, 262; 330, 570
  33. Kim, H. S. Chem. Phys. 2000, 253, 305; 257, 183; 2001, 269, 295
  34. Kim, H. S. THEOCHEM 2005, 722, 1; 2001, 540, 79; 541, 59
  35. Kim, H.-S. Bull. Korean Chem. Soc. 2006, 2, 315; 12, 2011 https://doi.org/10.5012/bkcs.2006.27.2.315
  36. Gorkel, G. W. Crown Ethers and Cryptands; The Royal Society of Chemistry: London, 1990
  37. Jorgensen, W. L. Free Energy Changes in Solution in Encyclopedia of Computational Chemistry; Schielyer, P. v. R., Ed.; Wiley: New York, 1998; Vol. 2, p 1061
  38. Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420 https://doi.org/10.1063/1.1740409
  39. Jorgensen, W. L.; Blake, J. F.; Buckner, J. K. Chem. Phys. 1989, 129, 193 https://doi.org/10.1016/0301-0104(89)80004-7
  40. Christian, R. Solvents and Solvent Effects in Organic Chemistry; 3rd ed.; Wiley-VCH: 2003; p 389
  41. Groth, P. Acta. Chem. Scand. A 1978, 32, 279
  42. Bockris, J. O'M.; Reddy, A. K. N. Modern Electrochemistry; Plenum Press: New York, 1970; Vol. 1, Chapter 2, p 45
  43. Chung, J. J.; Kim, H.-S. Bull. Korean Chem. Soc. 1993, 14, 220
  44. Enderby, J. E.; Neilson, G. W. Rep. Progr. Phys. 1981, 44, 38
  45. Mezei, M.; Beveridge, D. L. J. Chem. Phys. 1981, 74, 6902 https://doi.org/10.1063/1.441101
  46. Eerden, J. v.; Harkeman, S.; Feil, D. J. Phys. Chem. 1988, 92, 5076 https://doi.org/10.1021/j100329a004
  47. Mazor, M. H.; McCammon, J. A.; Lybrand, T. P. J. Am. Chem. Soc. 1990, 112, 4411 https://doi.org/10.1021/ja00167a044

Cited by

  1. Metal-ion binding via a cyclic network of intramolecular halogen-bonded interactions: a theoretical study vol.114, pp.9, 2016, https://doi.org/10.1080/00268976.2015.1136006
  2. Conformation of Alkali Metal Ion–Benzo-12-Crown-4 Complexes Investigated by UV Photodissociation and UV–UV Hole-Burning Spectroscopy vol.120, pp.32, 2016, https://doi.org/10.1021/acs.jpca.6b06626
  3. Estimation of Stability Constants of Copper(II) Complexes with α-Amino Acids Using Connectivity Index 3χv. Common Model for the Binary and Ternary Complexes vol.29, pp.9, 2011, https://doi.org/10.1002/cjoc.201180316
  4. Graph-Theoretical Modelling of Stability Constants of Copper(II) Complexes with Tripeptides Containing Glycine, Glutamic acid, and Histidine vol.88, pp.3, 2015, https://doi.org/10.1246/bcsj.20140358
  5. QFPR Analysis for Selectivity of between Na+ and Li+ Ions to 12-Crown-4: by a Monte Carlo Simulation Study vol.31, pp.10, 2008, https://doi.org/10.5012/bkcs.2010.31.10.2823