DOI QR코드

DOI QR Code

Synthesis of Dihydroxylated Chalcone Derivatives with Diverse Substitution Patterns and Their Radical Scavenging Ability toward DPPH Free Radicals

  • Kim, Beom-Tae (The Center for Healthcare Technology Development, Chonbuk National University) ;
  • O, Kwang-Joong (Research Center of Bioactive Materials, Chonbuk National University) ;
  • Chun, Jae-Chul (Division of Applied Biotechnology, College of Agriculture and Life Science, Chonbuk National University) ;
  • Hwang, Ki-Jun (Department of Chemistry, College of Natural Science, Chonbuk National University)
  • Published : 2008.06.20

Abstract

A series of dihydroxylated chalcone derivatives with diverse substitution patterns on a phenyl ring B and the para-substituents on a phenyl ring A were prepared, and their radical scavenging activities were evaluated by simple DPPH test to determine quantitative structure-activity relationship in these series of compounds. The chalcone compounds with the ortho- (i.e. 2',3'- and 3',4'-) and para- (i.e. 2,5'-) substitution patterns show an excellent antioxidant activities (80-90% of control at the concentration of 50 $\mu$M) which are comparable to those of ascorbic acid and $\alpha$ -tocopherol as positive reference materials. On the contrary, the compounds with meta- (i.e. 2',4'-, 3',5'-) substitution pattern demonstrate very dramatic decrease in activities which are around 25% of the control even at the concentration of 200 $\mu$ M (IC50 > 200 $\mu$ M). These dramatic differences could be interpreted in terms of the ease formation of fairly stable semiquinone radicals from the ortho- and parasubstituted chalcone molecules through facilitating electron delocalization. Our results indicate that the substitution patterns of two hydroxyl groups on ring B are very important structural factors for their radical scavenging activity enhancement. Meanwhile, the substituents at para-position of the phenyl ring A of chalcones have no influence on the activity.

Keywords

References

  1. Dimmock, J. R.; Elias, D. W.; Beazely, M. A.; Kandepu, N. M. Curr. Med. Chem. 1999, 6, 1125
  2. Go, M. L.; Wu, X.; Liu, X. L. Curr. Med. Chem. 2005, 12, 483 https://doi.org/10.2174/0929867053363153
  3. Nowakowska, Z. Eur. J. Med. Chem. 2007, 42, 125 https://doi.org/10.1016/j.ejmech.2006.09.019
  4. Sogawa, S.; Nihro, Y.; Ueda, H.; Miki, T.; Matsumoto, H.; Satoh, T. Biol. Pharm. Bull. 1994, 17, 251 https://doi.org/10.1248/bpb.17.251
  5. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Phytochemistry 2004, 65, 1389 https://doi.org/10.1016/j.phytochem.2004.04.016
  6. Anto, R. J.; Sukumaran, K.; Kuttan, G.; Rao, M. N. A.; Subbaraju, V.; Kuttan, R. Cancer Lett. 1995, 97, 33 https://doi.org/10.1016/0304-3835(95)03945-S
  7. Calliste, C. A.; Le Bail, J. C.; Trouillas, P.; Pouget, C.; Habrioux, G.; Chulia, A. J.; Duroux, J. L. Anticancer Res. 2001, 21, 3949
  8. Tapiero, H.; Tew, K. D.; Ba, N.; Mathe, G. Biomed. Pharm. Ther. 2002, 56, 200 https://doi.org/10.1016/S0753-3322(02)00178-6
  9. Rezk, B. M.; Haenen, G. R. M. M.; van der Vijgh, W. F. F.; Bast, A. Biochem. Biophys. Res. Commun. 2002, 295, 9 https://doi.org/10.1016/S0006-291X(02)00618-6
  10. De Vincenzo, R.; Ferlini, C.; Distefano, M.; Gaggini, C.; Riva, A.; Bombardelli, E.; Morazzoni, P.; Valenti, P.; Belluti, F.; Ranelletti, F. O.; Mancuso, S.; Scambia, G. Cancer Chemotheraphy and Pharmacology 2000, 46, 305 https://doi.org/10.1007/s002800000160
  11. Cai, Y.-Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Life Sciences 2006, 78, 2872 https://doi.org/10.1016/j.lfs.2005.11.004
  12. Liu, M.; Wilairat, P.; Go, M.-L. J. Med. Chem. 2001, 44, 4443 https://doi.org/10.1021/jm0101747
  13. Ko, F. N.; Liao, C. H.; Kuo, Y. H.; Lin, Y. L. Biochim. Biophys. Acta 1995, 1258, 145 https://doi.org/10.1016/0005-2760(95)00111-O
  14. Cao, G.; Sofic, E.; Prior, R. L. Free Radic. Biol. Med. 1997, 22, 749 https://doi.org/10.1016/S0891-5849(96)00351-6
  15. Burda, S.; Oleszek, W. J. Agric. Food Chem. 2001, 49, 2774 https://doi.org/10.1021/jf001413m
  16. Arora, A.; Nair, M. G.; Strasburg, G. M. Free Radic. Biol. Med. 1998, 24, 1355 https://doi.org/10.1016/S0891-5849(97)00458-9
  17. Pietta, P.-G. J. Nat. Prod. 2000, 63, 1035 https://doi.org/10.1021/np9904509
  18. Dugas Jr., A. J.; Castaneda-Acosta, J.; Bonin, G. C.; Price, K. L.; Fischer, N. H.; Winston, G. W. J. Nat. Prod. 2000, 63, 327 https://doi.org/10.1021/np990352n

Cited by

  1. Protective effects of 1,3-diaryl-2-propen-1-one derivatives against H2O2-induced damage in SK-N-MC cells vol.31, pp.6, 2010, https://doi.org/10.1002/jat.1594
  2. Surface modification for small-molecule microarrays and its application to the discovery of a tyrosinase inhibitor vol.7, pp.2, 2011, https://doi.org/10.1039/C0MB00122H
  3. Antibacterial, Antioxidant and Binding Studies of Some Novel Diaryl Sulphide Derivatives vol.187, pp.11, 2012, https://doi.org/10.1080/10426507.2012.685996
  4. Pyreno-chalcone dendrimers as an additive in the redox couple of dye-sensitized solar cells vol.47, pp.4, 2012, https://doi.org/10.1007/s10853-011-5967-9
  5. Structural Correlation of Some Heterocyclic Chalcone Analogues and Evaluation of Their Antioxidant Potential vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181011996
  6. Heteroaryl Chalcones: Design, Synthesis, X-ray Crystal Structures and Biological Evaluation vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181012707
  7. Theoretical study on the antioxidant properties of 2′-hydroxychalcones: H-atom vs. electron transfer mechanism vol.19, pp.9, 2013, https://doi.org/10.1007/s00894-013-1921-x
  8. Microwave-Assisted Synthesis and Tyrosinase Inhibitory Activity of Chalcone Derivatives vol.82, pp.1, 2013, https://doi.org/10.1111/cbdd.12126
  9. Design and Synthesis of Chalcone Derivatives as Inhibitors of the Ferredoxin — Ferredoxin-NADP+ Reductase Interaction of Plasmodium falciparum: Pursuing New Antimalarial Agents vol.19, pp.12, 2014, https://doi.org/10.3390/molecules191221473
  10. Synthesis and Biological Evaluation of Novel Chalcone and Pyrazoline Derivatives Bearing Substituted Vanillin Nucleus vol.52, pp.4, 2014, https://doi.org/10.1002/jhet.2215
  11. Synthesis, structure, and antioxidant activity of methoxy- and hydroxyl-substituted 2'-aminochalcones vol.147, pp.10, 2016, https://doi.org/10.1007/s00706-016-1812-9
  12. Total synthesis of triazole-linked C-glycosyl flavonoids in alternative solvents and environmental assessment in terms of reaction, workup and purification vol.18, pp.20, 2016, https://doi.org/10.1039/C6GC01647B
  13. Synthesis and Selective Cytotoxic Activities on Rhabdomyosarcoma and Noncancerous Cells of Some Heterocyclic Chalcones vol.21, pp.3, 2016, https://doi.org/10.3390/molecules21030329
  14. Evaluation of the radical scavenging activity of a series of synthetic hydroxychalcones towards the DPPH radical vol.76, pp.4, 2011, https://doi.org/10.2298/JSC100517043T
  15. Synthesis of Some Pyrimidine, Pyrazole, and Pyridine Derivatives and Their Reactivity Descriptors vol.2018, pp.2090-9071, 2018, https://doi.org/10.1155/2018/8795061
  16. Synthesis of leading chalcones with high antiparasitic, against Hymenolepis nana, and antioxidant activities vol.54, pp.3, 2018, https://doi.org/10.1590/s2175-97902018000317343
  17. Heterocyclization of polarized system: synthesis, antioxidant and anti-inflammatory 4-(pyridin-3-yl)-6-(thiophen-2-yl) pyrimidine-2-thiol derivatives vol.12, pp.1, 2018, https://doi.org/10.1186/s13065-018-0437-y
  18. ChemInform Abstract: Synthesis of Dihydroxylated Chalcone Derivatives with Diverse Substitution Patterns and Their Radical Scavenging Ability Toward DPPH Free Radicals. vol.39, pp.42, 2008, https://doi.org/10.1002/chin.200842076
  19. Electrochemical and Fluorescent Properties of Ferrocenyl Chalcone with N-Ethyl Carbazole Group vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.513
  20. Relationships between Structure and Anti-oxidative Effects of Hydroxyflavones vol.30, pp.6, 2008, https://doi.org/10.5012/bkcs.2009.30.6.1397
  21. 2,4-Dihydroxycinnamic Esters as Skin Depigmenting Agents vol.30, pp.7, 2008, https://doi.org/10.5012/bkcs.2009.30.7.1619
  22. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents vol.18, pp.3, 2010, https://doi.org/10.1016/j.bmc.2009.11.066
  23. 4-Hydroxy-2'-Nitrodiphenyl Ether Analogues as Novel Tyrosinase Inhibitors vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1319
  24. Isoeugenol-based novel potent antioxidants: Synthesis and reactivity vol.46, pp.9, 2008, https://doi.org/10.1016/j.ejmech.2011.07.041
  25. Synthesis and Antibacterial Activity of Some Heterocyclic Chalcone Analogues Alone and in Combination with Antibiotics vol.17, pp.6, 2012, https://doi.org/10.3390/molecules17066684
  26. Synthesis of Heterocyclic Chalcone Derivatives and Their Radical Scavenging Ability Toward 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Free Radicals vol.33, pp.8, 2008, https://doi.org/10.5012/bkcs.2012.33.8.2585
  27. A DFT study on the structure and radical scavenging activity of newly synthesized hydroxychalcones vol.26, pp.3, 2008, https://doi.org/10.1002/poc.3074
  28. Synthesis, In Vitro Biological Evaluation, and Oxidative Transformation of New Flavonol Derivatives: The Possible Role of the Phenyl- N , N -Dimethylamino Group vol.23, pp.12, 2008, https://doi.org/10.3390/molecules23123161
  29. Synthesis and antioxidant activity of newly synthesized chalcones vol.66, pp.3, 2008, https://doi.org/10.33320/maced.pharm.bull.2020.66.03.024
  30. Tamarix articulata Extracts Exhibit Antioxidant Activity and Offer Protection against Hydrogen Peroxide-Mediated Toxicity to Human Skin Fibroblasts vol.2020, pp.None, 2008, https://doi.org/10.1155/2020/8896263
  31. Compounds Removed from the Condensation Reaction between 2-acetylpyridine and 2-formylpyridine. Synthesis, Crystal Structure and Biological Evaluation vol.15, pp.2, 2008, https://doi.org/10.19261/cjm.2020.695
  32. Larvicidal activity of substituted chalcones against Aedes aegypti (Diptera: Culicidae) and non‐target organisms vol.77, pp.1, 2021, https://doi.org/10.1002/ps.6021
  33. Antibacterial activity of a new monocarbonyl analog of curcumin MAC 4 is associated with divisome disruption vol.109, pp.None, 2008, https://doi.org/10.1016/j.bioorg.2021.104668
  34. Synthesis, Characterization and in vitro Evaluation of 3-(4-(Methylthio)phenyl)-1-(thiophene-3-yl)prop-2-en-1-one vol.33, pp.5, 2008, https://doi.org/10.14233/ajchem.2021.23087