Three 1-(4-Hydroxyphenyl)-1H-1,2,4-triazole-based Cd(II) Coordination Polymers Directed by Aromatic Polycarboxylate Coligands

En-Cui Yang, Fang Jia, Xiu-Guang Wang, and Xiao-Jun Zhao*
College of Chemistry \& Life Science, Key Laboratory of Molecular Structure and Materials Performance,
Tiamin Normal University, Tiamin 300387, China. *E-mail: xiaojun_zhaol5@jahoo.com.cn Received September 10, 2008

Abstract

The reactions of 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (hptrz) and inorganic $\mathrm{Cd}(\mathrm{II})$ salts with different aromatic polycarboxylic acids in mixed-solvent led to the formation of three new crystalline coordination polymers, $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})(\mathrm{Hbtc})\right]_{n} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}\right\} \mathbf{1},\left[\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})_{2}(\mathrm{tp})_{2}\right]_{n}$ 2, and $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})-\right.\right.$ $(\mathrm{OH}-\mathrm{ip})]_{n}$ DMF $\cdot \mathrm{H}_{2} \mathrm{O}_{j} \mathbf{3}\left(\mathrm{H}_{3} \mathrm{btc}=1,3,5\right.$-benzenetricarboxylic acid, H_{2} tp $=$ terephthalic acid, and $\mathrm{OH}-\mathrm{H}_{2} \mathrm{ip}=5-$ hydroxyisophthalic acid), which were fully characterized by elemental analysis, IR spectroscopy, single crystal X-ray crystallography, thermogravimertric analysis and luminescence spectra. Structure determination revealed that one-dimensional (1-D) polymeric chains for $\mathbf{1}$ and 3, and 2-D layered structure for 2 are significantly directed by the coordination mode of the carboxylate groups from aromatic coligands. In contrast, the terminal hptrz ligand affords its uncoordinated phenolic OH group to form classical H -bond interactions with coordinated water and/or carboxylate groups, which are responsible for the formation of 3-D supramolecular networks. In addition, the three solid coordination polymers with considerable thermal stability present strong hptrz-based fluorescence emissions at room temperature.

Key Words : 1-(4-Hydroxyphenyl)-1H-1,2,4-triazole, Mixed-ligand, Coordination polymer

Introduction

During the past decades, 1,2,4-triazole (Htrz) and its diverse derivatives have already becoming one of the most promising ligands, and are widely applied upon the construction of various transitional metal complexes with luminescence, magnetic and ion precursor properties. ${ }^{1,3}$ Bearing three nitrogen atoms in a five-membered heterocycle, the unsubstituted trz in the neutral and/or anion form has exhibited diverse coordination modes such as bidentate-, tridentate-bridging and terminal monodentate-coordination fashions, connecting the discrete metal atoms into polynuclear or extending structures. ${ }^{4}$ However, the coordination behaviors of trz derivatives have been less investigated by far.' Recently, Kahn group has synthesized two linear trinuclear-iron (II) complexes with 4-(p-methoxypheny1)-$1,2,4$-triazole (p-MeOptrz) and further investigated their magnetic properties. ${ }^{6}$ They found that the central $\mathrm{Fe}(\mathrm{II})$ atom in the trinuclear complex was triply bridged to each of the external $\mathrm{Fe}(\mathrm{II})$ atoms by p-MeOptrz ligand through the nitrogen atoms in the 1,2-positions, which showed the spin crossover phenomenon associated with cooperative interactions between the $\mathrm{Fe}(\mathrm{II})$ centers. ${ }^{6,7}$ Additionally, novel $\mathrm{Cu}(\mathrm{II})$-polymers with m-phenol-1,2,4-triazole (m-ptr) or p -phenol-1,2,4-triazole (p-ptr) ligand were also isolated respectively, ${ }^{8-10}$ exhibiting antiferromagnetic interactions between the $\mathrm{Cu}(\mathrm{II})$ ions. On the other hand, to explore the potential fluorescence properties of the trz derivatives, a series of $\mathrm{Zn}(\mathrm{II}) / \mathrm{Hg}(\mathrm{II})$ complexes bridged by bidentate m - ptr were successively prepared. As expected, these complexes displayed green and blue fluorescence emissions originated from the $\pi-\pi^{*}$ transition of the triazole rings as well as the
ligand-to-metal transfer (LMCT). ${ }^{9.10}$ In addition to the bi-dentate-bridging mode presented by the derivatives of trz, new mononuclear complexes of $\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{II})$ with 1-(4-hydroxyphenyl)-1H-1,2,4-triazole (hptrz) were obtained, in which hptrz acted as a simple monodentate ligand. ${ }^{11}$ Thus, the derivatives of trz coordinate to a metal ion in various modes (monodentate or bidentate-bridging), depending on the substituted position of the triazole ring. ${ }^{12}$ To firther explore the coordination behaviors of trz derivatives as well as their potential applications, in the present paper, three hptrz-based $\mathrm{Cd}(\mathrm{II})$ coordination polymers with aromatic polycarboxylate coligands, $\left\{\left[\mathrm{Cd}_{(}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})\right.\right.$ $\left.(\mathrm{Hbtc})_{n} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}\right)$ 1, $\left[\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})_{2}(\mathrm{tp})_{2}\right]_{n}$ 2, and $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})(\mathrm{OH}-\mathrm{ip})\right]_{n} \cdot \mathrm{DMF} \cdot \mathrm{H}_{2} \mathrm{O}\right\} 3\left(\mathrm{H}_{3} \mathrm{btc}=1,3,5-\right.$ benzenetricarboxylic acid, $\mathrm{H}_{2} \mathrm{tp}=$ terephthalic acid, $\mathrm{OH}-$ $\mathrm{H}_{2} \mathrm{ip}=5$-hydroxyisophthalic acid), have been prepared and their crystal structures and fluorescence properties were fully characterized. X-ray diffractions reveal that the diverse structures of 1-D polymeric chain for $\mathbf{1}$ and $\mathbf{3}$ as well as the 2-D infinite layer for 2 , are significantly governed by the aromatic carboxylate groups and the neutral hptrz only acts as a terminal ligand to coordinate with Cd (II) atom in a $\mu 4^{-}$ monodentate fashion.

Experimental Section

General Methods. Reagents were purchased commercially (hptrz, H_{3} btc, H_{2} tp and $\mathrm{OH}-\mathrm{H}_{2} \mathrm{ip}$, were from Acros and other analytical-grade reagents were from Tianjin chemical reagent factory) and used without firther purification. Doubly deionized water was employed for the conventional synthesis. Fourier transform (FT) IR spectra (KBr pellets) were
collected on a Nicolet IR-200 spectrometer in the range $4000-400 \mathrm{~cm}^{-1}$. Elemental analyses for C, H and N were determined on a Perkin-Elmer 2400C elemental analyzer. Thermogravimetric analysis experiments were carried out on a Shimadzu simultaneous DTG-60A thermal analysis instrument from room temperature to $800^{\circ} \mathrm{C}$ under a N_{2} atmosphere (flow rate $10 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$) at a heating rate of 8 ${ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Fluorescence spectra of the polycrystalline samples were performed on a Cary Eclipse fluorescence spectrophotometer (Varian) equipped with a xenon lamp and quartz carrier at room temperature.
Synthesis of $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})(\mathrm{Hbtc})\right]_{n} \cdot \mathrm{CH}_{3} \mathrm{OH} \cdot \mathrm{H}_{2} \mathrm{O}\right\}$ 1. To a methanol solution (5 mL) containing hptrz (0.05 mmol, 8.1 mg) and H;btc ($0.2 \mathrm{mmol}, 42.0 \mathrm{mg}$) was slowly added an aqueous solution (5 mL) of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.2$ mmol, 61.6 mg) with stirring. The mixture was filtered after further stirring for half an hour. Colorless block crystals suitable for X -ray diffraction were grown by slow evaporation of the filtrate within several days. Yield based on Cd : $56.7 \mathrm{mg}, 50 \%$. Elemental analysis for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CdN}_{3} \mathrm{O}_{11}$: Found (Calc.); C. 38.16 (38.08); H, 3.71 (3.73); N. 7.43 (7.40). IR data (in KBr, cm ${ }^{-1}$): 3466 (s), 3348 (s), 3109 (w), 1687 (m). 1616 (vs), 1560 (m), 1528 (vs), 1436 (m), 1372 (s), 1324 (w), 1270 (vs), 1131 (w), 1107 (w), 1050 (w), 1008 (w), 982 (w), 828 (w), 753 (w), 693 (w), 525 (w).

Synthesis of $\left[\mathrm{Cd}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})_{2}(\mathrm{tp})_{2}\right]_{\pi}$ 2. To a DMF
solution (5 mL) of hptrz ($0.1 \mathrm{mmol}, 16.1 \mathrm{mg}$) and H_{2} tp (0.1 mmol, 16.6 mg) was added slowly an aqueous solution (5 $\mathrm{mL})$ of $\mathrm{Cd}\left(\mathrm{OAc} h_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 26.6 \mathrm{mg})\right.$ with stirring and the pH value of the mixture was adjusted to 7 by triethylamine. The mixture was then filtered after further stirring for half an hour. Colorless block crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate at room temperature within a few days. Yield based on Cd: $16.0 \mathrm{mg}, 35 \%$. Elemental analysis for $\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{Cd}_{2} \mathrm{~N}_{6} \mathrm{O}_{12}$, Found (Calc.); C, 42.32 (42.17); H, 2.82 (2.88); N, 9.19 (9.22). \mathbb{R} data (in $\mathrm{KBr}, \mathrm{cm}^{-1}$): 3437 (br, s), 3131 (m), 1637 (m), 1562 (s), 1526 (m), 1406 (m), 1270 (w), 1212 (w), 1131 (w), 981 (w), 828 (w), 744 (w), 512 (w).

Synthesis of $\left\{\left[\mathrm{Cd}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{hptrz})(\mathrm{OH}-\mathrm{ip})\right]_{n} \cdot \mathrm{DMF} \cdot \mathrm{H}_{2} \mathrm{O}\right\} 3$. To a mixed DMF-methanol ($1: 1 \mathrm{v} / \mathrm{v}$) solution (5 mL) containing hptrz ($0.1 \mathrm{mmol}, 16.1 \mathrm{mg}$) and $\mathrm{OH}-\mathrm{H}_{2}$ ip (0.1 mmol, 18.2 mg) was slowly added an aqueous solution (5 $\mathrm{ml})$ of $\mathrm{Cd}\left(\mathrm{NO}_{3}\right)_{2}-4 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 30.8 \mathrm{mg})$ with stirring. The pH value of the mixture was adjusted to 7 by triethylamine. The mixture was then filtered. Colorless sheet crystals suitable for X-ray diffraction were obtained by slow evaporation of the filtrate at room temperature within a few days. Yield based on Cd: $20.3 \mathrm{mg}, 35 \%$. Elemental analysis for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Cd} \mathrm{N}_{4} \mathrm{O}_{10}$, Found (Calc.): C, 39.46 (39.29); H, 4.29 (4.16); $\mathrm{N}, 9.83$ (9.65). R data (in $\mathrm{KBr}, \mathrm{cm}^{-1}$): 3346 (s), 3110 (m), 1657 (s), 1619 (s), 1562 (vs), 1527 (vs), 1473 (w), 1418

Table 1. Crystal data and structure refinements for $1-3^{i}$

	1	2	3
Empirical Formula	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{CdN} \mathrm{N}_{3} \mathrm{O}_{11}$	$\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{Cd}_{2} \mathrm{~N}_{6} \mathrm{O}_{12}$	$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{CdNN}_{4} \mathrm{O}_{69}$
Color and Habit	colorless block	colorless block	colorless sheet
Crystal Size (mm)	$0.30 \times 0.28 \times 0.16$	$0.24 \times 0.23 \times 0.18$	$0.24 \times 0.23 \times 0.12$
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	C2/c	P-1	$P-1$
$a(\AA)$	$18.9284(5)$	8.989 (3)	10.1886(6)
$b(\AA)$	$10.3163(3)$	9.929(3)	10.4330(6)
$c(\AA)$	$21.7021(6)$	10.818(3)	$12.2766(7)$
$\beta{ }^{(0)}$	94.54	$96.961(4)$	96.8640(10)
$F\left(\AA^{3}\right)$	4224.5(2)	818.7(4)	1137.18(11)
Z	8	1	2
Fw	567.78	911.39	580.82
$D_{\text {caks }}\left(\mathrm{Mgm}^{-3}\right)$	1.785	1.848	1.696
$\mu\left(111 n^{-l}\right)$	1.101	1.374	1.023
$F(000)$	2288	452	588
$\theta\left({ }^{\prime \prime}\right)$	1.88 to 25.01	2.00 to 25.00	2.22 to 25.01
Reflections measured	10550	4438	6222
Index ranges of measured data	$-22 \leq h \leq 22$	$-5 \leq h \leq 10$	$-12 \leq h \leq 10$.
	$-12 \leq k \leq 11$	$-11 \leq k \leq 11$	$-10 \leq k \leq 12$,
	$-20 \leq 1 \leq 25$	$-12 \leq I \leq 12$	$-14 \leq 1 \leq 14$
Independent reflections	$3720\left(R_{i m}=0.0114\right)$	$2851\left(R_{j: /}=0.0133\right)$	$3965\left(R_{i n}=0.0171\right)$
Observed Reflection $[I>2 \sigma(I)]$	3490	2590	3636
Parameter / Restraints / Datafobs.)	$302 / 0 / 3720$	236/0/2851	311/0/3965
Final " R_{1}, ${ }^{5} w R_{2}[I>2 \sigma(I)]$	0.0182, 0.0501	0.0219,0.0572	$0.0241,0.0706$
$R_{1}, w R_{2}$ indices(all)	0.0198/0.0515	0.0248/0.0579	$0.0265 / 0.0724$
S	1.049	1.041	1.040
($\Delta / \sigma)_{\text {max }}$	0.000.0.000	0.001, 0.000	0.001, 0.000
$(\Delta \rho)_{\text {miximin }}\left(\mathrm{e}^{-\frac{3}{3}}\right)$	0.317, -0.418	0.394. -0.490	0.553, -0.574

[^0](s), 1387 (vs), 1273 (m), 1217 (w), 1130 (w), 1103 (w), 1051 (w), 829 (m), 731 (m), 668 (w), 627 (w), 569 (w), 527 (w).

X-ray Crystallography. Diffraction intensities for 1-3 were collected on a computer controlled Bruker APEX-II CCD diffractometer equipped with graphite-monochromated $\mathrm{Mo}-K \alpha$ radiation with radiation wavelength $0.71073 \AA$ by using a ω-scan technique. The program SAINT was used for integration of the diffraction profiles. ${ }^{13}$ Semi-empirical absorption corrections were applied using SADABS program. ${ }^{1+}$ The structures were solved by direct method and refined with the full-matrix least-squares technique using the SHELXS-97 and SHELXL-97 programs. ${ }^{15}$ Anisotropic thermal parameters were assigned to all non-hydrogen atoms. The organic hydrogen atoms were generated geometrically. The starting positions of H attached to oxygen atom were located in difference Fourier syntheses and then fixed geometrically as riding atoms. The crystallographic data and experimental details for structural analyses were summarized in Table 1. Selected bond distances and angles for 1-3 were listed in Tables 2-4, respectively. Hydrogen bond geometries were summarized in Table 5.

Results and Discussion

Synthesis and FT-IR Spectra. Single-crystals for the three compounds (1-3) were successfully obtained by careful control of the reaction media due to the considerable solubility of the hptrz. 1 was obtained in mixed methanolwater solution, which was different from the DMF-water medium for 2 . While 3 was obtained in ternary DMF-meth-anol-water medium. Additionally, the pH value of the medium also became a critical factor for the formation of the target complexes. 1 was grown in the weak acidic medium controlled by the molar ratio of mixed ligands (hptrz: H_{3} btc $=$ 1:4). Both 2 and 3 were grown at neutral solution adjusted by triethylamine.

In their \mathbb{R} spectra, the broad and strong absorption bands appeared at 3466 and $3348 \mathrm{~cm}^{-1}$ for 1, $3437 \mathrm{~cm}^{-1}$ for 2 and $3346 \mathrm{~cm}^{-1}$ for 3 should be ascribed to the $\mathrm{O}-\mathrm{H}$ stretching vibrations of water, hptrz and methanol, or OH -ip. The medium peak located at $1687 \mathrm{~cm}^{-1}$ in 1 should be assigned to undeprotonated carboxylic group. In contrast, the absence of peaks between 1730 and $1690 \mathrm{~cm}^{-1}$ in both 2 and 3
(a)

(b)

Figure 1. (a) 2-D layer of 1 fomed by interchain $\mathrm{O}-\mathrm{H} \cdots \mathrm{O} \mathrm{H}$-bonds interactions with atomic labels in the asymmetric unit (only H -atoms involved in H -bond were included). (b) 3-D H-bonded network of 1.
indicated the full deprotonation of H_{2} tp and $\mathrm{OH}-\mathrm{H}_{2}$ ip, ${ }^{16}$ which was consistent with the results of single crystal structure determinations. Additionally, 1 showed the characteristic bands of carboxylate groups at 1616 and $1560 \mathrm{~cm}^{-1}$ for asymmetric stretching and at 1528 and $1436 \mathrm{~cm}^{-1}$ for symmetric stretching, the smaller separation $\left(<200 \mathrm{~cm}^{-1}\right.$) between $v_{\mathrm{as}}\left(\mathrm{COO}^{-}\right)$and $v_{s}\left(\mathrm{COO}^{-}\right)$indicated the chelating bidentate coordination mode of carboxylate group. For 2 , the asymmetric and symmetric stretching bands of carboxylate groups appeared at $1562.1526 \mathrm{~cm}^{-1}$ and $1406 \mathrm{~cm}^{-1}$. And their separations less than $200 \mathrm{~cm}^{-1}$ suggested the absence of the monodentate binding fashion of the carboxylate groups. ${ }^{16}$ The asymmetric and symmetric stretching bands of carboxylate groups of 3 appear at 1657 and $1619 \mathrm{~cm}^{-1}$ and 1562 . 1527,1418 and $1387 \mathrm{~cm}^{-1}$, suggesting the mixed coordination modes of the $\mathrm{OH}-\mathrm{ip}$ dianion in the monodentate and chelating bidentate fashions respectively. ${ }^{16}$ Additionally, the medium bands of the three complexes appeared at 1480 $1520 \mathrm{~cm}^{-1}$ and $800-1400 \mathrm{~cm}^{-1}$ ranges should be associated with triazole ligand vibrations. ${ }^{17}$ Thus, the results of \mathbb{R} spectra were well agreement with those of crystal structure determinations.

Solid Structures of 1-3. X-ray single crystal analyses reveal that 1 crystallizes in monoclinic $C 2 / \mathrm{c}$ space group. exhibiting a one-dimensional (1-D) polymeric chain bridged by partly deprotonated Hbtc. As shown in Figure 1a, the sole Cd(II) atom in the crystallographically asymmetric unit is seven-coordinated by one N donor from a neutral hptrz ligand and six O donors from two separate Hbte anions and two water molecules, adopting a distorted pentagonal-bipyramidal geometry with two coordinated water molecules occupying the axial positions. The bond lengths of $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ are ranged from $2.2733(13)$ to $2.6369(15) \AA$ (Table 2) and the central $\mathrm{Cd}(\mathrm{II})$ atoms deviates from the least-squares plane generated by 02-03-06A-07A-N3 only ca $0.0352 \AA$.
The doubly deprotonated Hbte anion affords its two deprotonated carboxylate groups to bridge the adjacent $\mathrm{Cd}(\mathrm{II})$ atoms in a bis-bidentate chelating fashion, resulting in the formation of 1-D linear chain along the b-direction (Figure 1a). And the nearest $\mathrm{Cd} \cdots \mathrm{Cd}$ distance across the same Hbtc anion is $10.3163(3) \AA$. Acting as a terminal ligand, the neutral hptrz coordinates with the $\mathrm{Cd}(\mathrm{II})$ atom in μ_{4}-monodentate fashion. Additionally, hptrz affords its uncoordinated phenolic OH group as H -bonds donor to produce interchain $\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}(4) \mathrm{H}$-bonds interactions with the carboxylic group from the adjacent chain. Thus, these 1-D chains are assembled into 2-D supramolecular layer (Figure 1a). The $\mathrm{H}(1) \cdots \mathrm{O}(4)$ distance is $1.931 \AA$, and $\mathrm{O}(1)-\mathrm{H}(1)^{\cdots} \mathrm{O}(4)$ angle is 167.68° (see Table 5). These 2-D layers are further stacked together in anti-parallel manner by three-fold H -bonds interactions between coordinated water and carboxylate group of Hbtc or phenolic OH of hptrz (Figure 1b). H-bonds distances and angles are listed in Table 5. In addition, the lattice water and methanol molecules are further entrapped in the 3-D supramolecular network of $\mathbf{1}$ by classical $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H}$ $\cdots \mathrm{N}$ H-bonds interactions (see Table 5).

Different from 1, complex 2 shows a binuclear-based 2-D

Table 2. Selected bond distances (A) and angles $\left({ }^{\circ}\right)$ for $1^{\text {a }}$

$\mathrm{Cd}(1)-\mathrm{O}(3)$	$2.2733(13)$	$\mathrm{Cd}(1)-\mathrm{O}(8)$	2.2811(15)
$\mathrm{Cd}(1)-\mathrm{N}(3)$	$2.2901(16)$	$\mathrm{Cd}(1)-\mathrm{O}(6) \# 1$	$2.3095(13)$
$\mathrm{Cd}(1)-\mathrm{O}(9)$	$2.3271(14)$	$\mathrm{Cd}(1)-\mathrm{O}(2)$	$2.6283(14)$
$\mathrm{Cd}(1)-\mathrm{O}(7)+1$	2.6369(15)		
$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(8)$	98.19(5)	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{N}(3)$	$131.73(5)$
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{N}(3)$	88.55(6)	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(6){ }^{+1}$	88.34(5)
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(6){ }^{+1}$	87.05(5)	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(6){ }^{+1}$	$139.88(5)$
$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(9)$	91.51(5)	$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(9)$	168.86 (5)
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(9)$	89.06(5)	$\mathrm{O}(6) \# 1-\mathrm{Cd}(1)-\mathrm{O}(9)$	87.78(5)
$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(2)$	52.60 (4)	$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(2)$	85.92(5)
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(2)$	80.63(5)	$\mathrm{O}(6) \pm \mathbf{t}-\mathrm{Cd}(1)-\mathrm{O}(2)$	138.60(4)
$\mathrm{O}(9)-\mathrm{Cd}(1)-\mathrm{O}(2)$	104.42(5)	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(7)$ \# 1	139.76(4)
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(7)$ 共 1	87.66(5)	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(7){ }^{\text {ti }} 1$	87.96(5)
$\mathrm{O}(6) \# 1-\mathrm{Cd}(1)-\mathrm{O}(7) \# 1$	52.04 (4)	$\mathrm{O}(9)-\mathrm{Cd}(1)-\mathrm{O}(7)+1$	81.38(5)
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(7)$ 共 1	167.04(5)		

"Symmetry code: \#1 $=x, y+1,=$.
(44) layer motif extended by tp anions. As shown in Figure 2a, the fundamental structure subunit of 2 comprises two $\mathrm{Cd}(\mathrm{II})$ atoms, two coordinated $\mathrm{H}_{2} \mathrm{O}$ molecules (O 6 and O6A), two neutral hptrz ligands and two centro-symmetrical tp anions. Both $\mathrm{Cd}(\mathrm{II})$ atoms are seven-coordinated by one λ^{\prime} donor from terminal hptrz ligand and six O donors from three tp anions and one water molecule, exhibiting a distorted pentagonal-bipyramidal coordination polyhedron (Table 3).
Two tp anions with symmetry center extend the binuclear subunits in the crystallographic $b c$-plane, leading to the formation of an infinite 2-D (4 4) layer (Figure 2b). The tp anions along b-direction adopt chelating and bridging bidentate coordination mode to strengthen four $\mathrm{Cd}(\mathrm{II})$ atoms from adjacent binuclear subunits. While the tp anions along c-axis is in a bis-bidentate chelating fashion to link the two $\mathrm{Cd}(\mathrm{II})$ atoms from the separate binuclear subunit. The adjacent 2-D planes are further linked together to form a 3-D network through the $\mathrm{O}-\mathrm{H} \cdots \mathrm{OH}$-bonds interactions between the deprotonated carboxylate group of tp ligand and the coordinated water or phenolic OH group of hptrz (Figure 2c). H-bonds distances and angles were listed in Table 5.

3 crystallizes in the triclinic $P-1$ space group, displaying a 1-D polymeric chain bridged by OH -ip dianions. The crystallographically asymmetric unit of 3 contains one $\mathrm{Cd}(\mathrm{II})$ atom, one hptrz ligand, one OH -ip anion, three $\mathrm{H}_{2} \mathrm{O}$ molecules (two are coordinated and the third one is lattice water molecules), and a free DMF molecule respectively. The Cd(II) atom is six-coordinated by one N donor from one hptrz and five O donors from two OH -ip ligands and two water molecules, adopting a distorted octahedral coordination geometry (Figure 3a). The $\mathrm{Cd}-\mathrm{O}$ and $\mathrm{Cd}-\mathrm{N}$ distance are ranged from $2.252(2)$ to $2.4471(18) \AA$ (Table 4), and are comparable to those $\mathrm{Cd}(\mathrm{II})$-coordination polymers with mixed ligands containing N, O-donors. ${ }^{18}$

Notably, in addition to the chelating bidentate coordination fashion, one of the carboxylate groups from OH -ip anion also presents a monodentate binding mode, which alternately link the adjacent Cd (II) ions into an infinite 1-D
(a)

(b)

Figure 2. (a) Local coordination environment of $\mathrm{Cd}(\mathrm{II})$ in $2(\mathrm{H}$ atoms are omitted for clarity). (b) 2-D layer of 2 (hptrz ligands were omitted for clarity). (c) 3-D supramolecular network of 2 formed by H -bonds interactions.

Table 3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $2 "$

$\mathrm{Cd}(1)-\mathrm{N}(3)$	2.289(2)	$\mathrm{Cd}(1)-\mathrm{O}(6)$	$2.311(2)$
$\mathrm{Cd}(1)-\mathrm{O}(2)$	$2.312(2)$	$\mathrm{Cd}(1)-\mathrm{O}(3)$	$2.3917(19)$
$\mathrm{Cd}(1)-\mathrm{O}(4)$	2.409(2)	$\mathrm{Cd}(1)-\mathrm{O}(5) \mathrm{\#} 1$	2.471 (2)
$\mathrm{Cd}(1)-\mathrm{O}(5)$	$2.475(2)$		
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(6)$	90.35(8)	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(2)$	147.94(8)
$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(2)$	105.48(8)	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(3)$	98.16 (8)
O(6)-Cd 1 -O(3)	88.71 (7)	$O(2)-C d(1)-O(3)$	$55.56(7)$
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(4)$	131.05(8)	$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(4)$	78.51(7)
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(4)$	80.13(7)	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(4)$	128.56(7)
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(5){ }^{\text {H }} 1$	82.45(8)	$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(5)+1$	$172.57(6)$
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(5){ }^{\text {H }} 1$	$80.06(7)$	$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(5)=1$	90.51(7)
$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(5){ }^{\text {H }} 1$	107.63(7)	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(5)$	84.98(8)
$\mathrm{O}(6)-\mathrm{Cd}(1)-\mathrm{O}(5)$	104.45(7)	$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(5)$	116.49 (7)
$\mathrm{O}(3)-\mathrm{Cd}(1)-\mathrm{O}(5)$	166.50(6)	$\mathrm{O}(4)-\mathrm{Cd}(1)-\mathrm{O}(5)$	$53.38(6)$
$\mathrm{O}(5) \pm 1-\mathrm{Cd}(1)-\mathrm{O}(5)$	76.84(7)		

[^1](a)

(b)

(c)

Figure 3. (a) 1-D polymeric chain of $\mathbf{3}$ with atomic label in the asymmetric unit (H atoms are omitted for clarity). (b) 2-D layer of 3. (c) 3-D supramolecular network of 3 fomed by H -bonds interactions.
chain with the nearest $\mathrm{Cd} \cdots \mathrm{Cd}$ distance of being $10.1886(6)$ \AA (Figure 3a). As shown in Figure 3b, the adjacent 1-D chains are further linked together to form a 2-D layer through H -bonds interactions between coordinated water and deprotonated carboxylate groups (07-H7A $\cdots \mathrm{O}, \mathrm{O}(7)-$ $\mathrm{H}(7 \mathrm{~B}) \cdots \mathrm{O}(4)$ and $\mathrm{O} 8-\mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O}$, Table 5). The adjacent layers are further assembled together into a 3-D supramolecular network by H -bonds interactions between phenolic OH of hptrz and coordinated water molecules. The lattice water and DMF molecules are entrapped within the 3-D network by extensive $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ interactions (Figure 3 c and Table 5).

Coordination Modes of trz and Its Derivatives. It is well known that the binding preferences of a specific ligand towards metal ions depend essentially on the basicity of the N / O donor site, the steric hindrance of the substituent, the metal properties (main group or transition metal, charge, delectron configuration, and the hard or softness) and, sometimes, the coligands that complete the metal coordination sphere. ${ }^{19}$ Unsubstituted trz with less steric hindrance has exhibited four kinds of coordination modes (Scheme 1): $\mu, 4-$ bidentate bridging, μ_{1} - and μ_{4}-monodentate ${ }^{20,21}$ mode in a neutral ligand and $\mu_{12,2}$-tridentate bridging manner in an anionic form, ${ }^{1,12}$ which highly depend on the deprotonation ability. In contrast, the binding mode of the tr \angle derivatives is considerably less diverse, and is close related to the position of the substituent. Hptrz, 1 -substituted trz ligand, displays

Table 4．Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for $3^{\prime \prime}$

$\mathrm{Cd}(1)-\mathrm{O}(8)$	2．252（2）	$\mathrm{Cd}(1)-\mathrm{O}(4){ }^{\text {\＃}} 1$	$2.2601(19)$
$\mathrm{Cd}(1)-\mathrm{N}(3)$	2．268（2）	$\mathrm{Cd}(1)-\mathrm{Of}(1)$	2．4213（19）
$\mathrm{Cd}(1)-\mathrm{O}(2)$	2．434（2）	$\mathrm{Cd}(1)-\mathrm{O}(7)$	2.4471 （18）
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(4) \mathrm{\#} 1$	93．69（7）	$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{N}(3)$	97．05（8）
$\mathrm{O}(4) \stackrel{H}{1}-\mathrm{Cd}(1)-\mathrm{N}(3)$	131．39（8）	$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(1)$	92．68（7）
$\mathrm{O}(4) \stackrel{\Pi}{1} 1-\mathrm{Cd}(1)-\mathrm{O}(1)$	84．27（7）	$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(1)$	141．88（7）
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(2)$	99．76（8）	$\mathrm{O}(4) \pm 1-\mathrm{Cd}(1)-\mathrm{O}(2)$	135．70（7）
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(2)$	88．68（8）	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(2)$	$53.30(7)$
$\mathrm{O}(8)-\mathrm{Cd}(1)-\mathrm{O}(7)$	176．61（6）	$\mathrm{O}(4) * 1-\mathrm{Cd}(1)-\mathrm{O}(7)$	83．05（7）
$\mathrm{N}(3)-\mathrm{Cd}(1)-\mathrm{O}(7)$	84．47（7）	$\mathrm{O}(1)-\mathrm{Cd}(1)-\mathrm{O}(7)$	87．94（6）
$\mathrm{O}(2)-\mathrm{Cd}(1)-\mathrm{O}(7)$	$83.28(7)$		

＂Symmetry code：$\# 1=x+1,1 ;=$
Table 5．Hydrogen－bonding parameters（ \AA ，${ }^{\circ}$ ）for 1－3

Donor－H \cdots Acceptor	D－H	H ${ }^{\text {a }}$ A	D ${ }^{\text {A }}$	D－H $\cdots \mathrm{A}$
1				
$\mathrm{Ol}-\mathrm{Hl} \cdots{ }^{\text {O }}$	0.82	1.931	$2.738(1)$	167.68
$\mathrm{OS}-\mathrm{H} 5 \cdots \mathrm{Oll} \mathrm{\# 2}$	0.82	1.844	2.663 （1）	177.02
$\mathrm{O} 8-\mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O}_{2} \mathrm{H}$	0.85	1.874	$2.711(1)$	167.69
O8－H8B $\cdots \mathrm{OlO} \mathrm{\# 4}$	0.85	1.920	2．754（1）	166.31
O9－H9A \cdots O6 ${ }^{\text {＋}} 5$	0.85	1.858	2.705 （1）	174.49
O9－H9B $\cdots \mathrm{O1} \# 6$	0.85	2.258	$3.002(4)$	146.28
$\mathrm{O} 10-\mathrm{H} 10 \mathrm{~A} \cdots \mathrm{O} \# 7$	0.85	1.863	2．711（0）	174.69
$\mathrm{O10}-\mathrm{H} 10 \mathrm{~B} \cdots \mathrm{O} 4+8$	0.85	2.222	$2.990(5)$	150.36
$\mathrm{O} 11-\mathrm{H} 11 \cdots \mathrm{~N} 2$ \＃9	0.82	2.308	$3.03+(0)$	147.89
2				
$\mathrm{Ol}-\mathrm{Hl} \cdots{ }^{-10} 1$	0.82	1.832	2.648 （0）	173.24
O6－H6A \cdots Ol ${ }^{\text {rin }}$	0.85	2.031	2．869（3）	168.47
O6－H6B $\cdots{ }^{3} \# 3$	0.85	1.850	2.693 （4）	171.39
3				
O5－H5 \cdots O9\＃1	0.82	1.747	2．550（1）	165.61
O6－H6－ 07 莹2	0.82	2.011	$2.776(1)$	154.98
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~A} \cdots \mathrm{Ol}{ }^{\text {H }} 3$	0.85	2.021	2.720 （1）	138.86
O7－H7B \cdots O4\＃4	0.85	1.921	$2.701(3)$	152.13
O8－H8A \cdots O3鿯	0.85	1.897	2.73000	166.02
O8－H8B $\cdots \mathrm{O} 10 \pm 5$	0.85	1.889	$2.723(1)$	166.29
O10－H10A $\cdots 2$	0.85	1.896	2.742 （4）	173.75
O10－H10B \cdots O5\＃4	0.85	2.016	2.837 （4）	162.39

＂Symmetry codes：For $1: \# 1=x-1 / 2,-y+1 / 2, z+1 / 2 ;$ \＃2 $=x, y-1, z-1$ ；
 $=-x, y-=+1 / 2 ; 4=x, y+1, z ;$ t $8=-x+1 / 2,-y+1 / 2,-z$ ；哲 $=x+$ $1 / 2,-y+1 / 2, z+1 / 2$ ．For $2: 1+x-1, y-1, z-1:+2=-x+1,-y+1$ ， $-z: 4=-x+2,-y+1,-z+1$ ．For 3： $\mathbf{4} 1=x, y+1, z+1: 2=-x+1$ ， $-y+1,-z ;$ 兵 $3=-x+2,-y+2,-z+1 ; 4=-x+1,-y+2,-z+1 ;+5$ $=-x+1,-y+1,-z+1$ ．
two types of monodentate modes：μ_{2}－and μ－binding modes probably resulted from the steric hindrance of aromatic ring．${ }^{11}$ The corresponding 4 －substituted trz ligands such as p－ MeOptrz，m－ptr and p－ptr show μ_{2}－monodentate and $\mu_{1,2-}$ bidentate bridging modes．${ }^{68-10}$ Obviously the binding beha－ viors of the reported trz derivatives herein are only domin－ ated by the trz ring，rather than the substitute．Therefore，the design and exploration of the novel trz－based ligand with potentially multiple coordinate sites are important and necessary to fully investigate the complex structure and their applications．

Scheme 1．Coordination modes of 1，2，4－triazole and its derivatives．

Thermal Stability．Owing to the analogous structure of 1 and 3 ，in the present investigation，only $\mathbf{1}$ and 2 were select－ ed as the representatives to explore the thermal stability of the hptrz－based mixed－ligand complexes．Both complexes presented two obvious weight－loss processes（Figure 4）．For 1，the first weight－loss began at $40^{\circ} \mathrm{C}$ and ended at $142^{\circ} \mathrm{C}$ ， corresponding to the synchronous release of lattice／coordi－ nated water and $\mathrm{CH}_{3} \mathrm{OH}$ molecules（obs： 13.2% ，calcd： 12.3% ）．Then，due to the consecutive decomposition of the mixed－ligand，the second weight－loss of 1 was ranged from 225 to $486^{\circ} \mathrm{C}$ ．And the final product was calculated to be CdO（obs： 21.7% ，calcd： 22.6% ）．In contrast，coordination polymer 2 was thermally stable up to $184^{\circ} \mathrm{C}$ ．The first weight－loss occurred from $184^{\circ} \mathrm{C}$ to $240^{\circ} \mathrm{C}$ ，due to the release of the two coordinated water molecules．The second weight－loss process between $307^{\circ} \mathrm{C}$ and $473^{\circ} \mathrm{C}$ was corre－ sponding to the continuous decomposition of organic ligands （obsd： 72.3% ，calcd： 71.8% ）．The weight of the residue above $473{ }^{\circ} \mathrm{C}$（obsd： 27.7% ）was assigned to CdO （calcd； 28.2% ）．Thus 2－D layered 2 displays considerable higher thermal stability than that of $\mathbf{1}$ with polymeric chain motif．

Figure 4．TG curves for 1 and 2.

Figure 5. Solid state fluorescence emission spectra of 1-3 and free hptrz ligand at room temperature.

Luminescent Properties. The solid-state fluorescent emission spectra of 1-3 were measured and presented in Figure 5. Upon excitation at 370 nm , the three solid samples displayed the maximum emissions at 421 nm but with variable intensity. In contrast, under the comparable experimental conditions, the similar emission behavior to the solid complexes was observed for the free hptrz ligand. Thus, the analogous emissions between hptrz and the solid complexes indicated that the emission were originate from $\pi-\pi^{*}$ transition of the triazole rings. ${ }^{18,22}$ The slightly shift of the emission peaks should be ascribed to both the deprotonation of the aromatic coligand as well as the chelating coordination action of the carboxylate and hptrz to Cd (II) ions.

Conclusion

Three hptrz-based $\mathrm{Cd}(\mathrm{II})$-coordination polymers, infinite 1 -D chains for $\mathbf{1}$ and 3 and 2-D layer for 2 , have been isolated by conventional evaporation method. Structure determinations confirm that the diversity structures of 1-3 are significantly directed by the aromatic polycarboxylate coligands not the terminal hptrz. Instead, their appreciable fluorescence emission behaviors mainly originate from the $\pi-\pi^{*}$ electronic transfer of the core hptrz ligands.

Supplementary Material. Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic data Centre (Deposition No. CCDC $-690788 \sim 690790$ for $\mathbf{1 - 3}$). These data can be obtained free of charge via www.cedc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Centre, 12 Union Road, Cambridge CB21EZ, UK; Fax: +441223 336033; email: deposit@ccdc.cam.ac.uk).

Acknowledgments. This present work was supported by the National Natural Science Foundation of China (20571056, 20703030). Natural Science Foundation of Tianjin (06YFJMJC03900, 07QTPTJC29800) and Tianjin Educational Committee (20060501, 2006ZD07).

References

1. (a) Ouellette, W.; Hudson, B. S.; Zubieta, J. Inorg. Chem. 2007, 46, 4887. (b) Ouellette, W.; Prosvirin, A. V.; Chieffo, V.; Dunbar, K. R.; Hudson, B. S.; Zubieta, J. Inorg. Chem. 2006, 45, 9346 . (c) Ouellette, W.: Yu, M. H.: OConnor, C. J.; Hagman, D.; Zubieta, I. Angent Chem. Int. Ed. 2006, 45, 3497. (J) Ouellette, W.; GalanMascarôs, J. R.; Dunbar, K. R.; Zubieta, J. Inorg. Chem. 2006, 45, 1909.
2. Liu, J. C.; Fu, D. G.; Zhuang, J. Z.; Duan, C. Y.; You, X. Z. J. Chem. Soc. Dalton Trans. 1999, 2337.
3. Abramovitch, R. A.; Gibson, H. H.; Olivella, S. J. Org. Chem. 2001, 66, 1242.
4. (a) Asaji, T.; Sakai, H.; Nakamura, D. Inorg. Chem. 1983, 23, 202. (b) Ferrer, S.; Haasnoot, J. G.; Reedijk, J.; Muller, E.; Biagini Cindi, M.; Lanfranchi, M.; Manoti Lanfredi, A. M.; Rilas, J. Inorg. Chem. 2000, 39, 1859. (c) Shakirova, O. G; Virovets, A V.; Naumov, D. Y.; Shvedenkov, Y. G.; Elochina, V. N.; Lavrenova, L. G. Inorg. Chem. Commun. 2002, 5, 690.
5. Foces-foces, C.; Cabildo, P.; Claramunt, R. M.; Elguero, J. Acta Cryst. 1999, C55, 1160.
6. Thomam, M.; Kalm, J. O.; Guilhem, J.; Varreta, F. Inorg. Chem. 1994, 33, 6029.
7. Gutlich, P.; Garcia, Y.; Goodwin, H. A. Chem. Soc. Rev: 2000, 29, 419.
8. Lider, E. V.; Peresypkina, E. V.; Smolentsev, A. I; Elokhina, V. N:; Yaroshenko, T. I.; Virovets, A. V.; Ikorskii, V. N.; Lavrenova, L. G Polyhedron 2007, 26, 1612.
9. Liu, B.; Guo, G-C.; Huang, J.-S. J. Solid State Chem. 2006, 179, 3136.
10. (a) Liu, B.; Li, B.; Zhang, X.C. Bull. Korean Chem. Soc. 2006, 27, 1677. (b) Zhang, X.-C.; Chen, Y.-H.; Liu, B. Bull. Korean Chem. Soc. 2008, 29, 511.
11. Lavrenova, L. G.: Ikorskii, V. N.; Sheludyakova, L. A.; Naumov, D. Yu.; Boguslavskii, E. G Russian J. Coord Chem. 2004, 30, 413.
12. Haasnoot, J. G. Coord. Chem. Rev. 2000, 200, 131.
13. Bruker AXS SAINT Soffucre Reference Momud; Madison, WI, 1998.
14. Sheldrick, G. M. SADABS: Program for Enpirical Absorption Correction of Area Detector Data; Lniversity of Gottingen: Germany, 1996.
15. (a) Sheldrick, G. M. SHELAL-97, Program for Xray Constal Struchure Refnement; Gottingen University: Gôtingen, Germany, 1997. (b) Sheldrick, G M. SHELXS-97, Program for X-ray. Constal Structure Solution, Götingen University: Gottingen, Genmany, 1997.
16. (a) Deacon, G. B.; Phillips, R. J. Coord Chem. Rev. 1980, 33, 227. (b) Bellamy, L. J. The Infrared Spectro of Conplex Molecules; Wiley: New York, 1958.
17. Ouellette, W.; Prosvirin, A. V.; Valeich, J.; Dunbar, K. R.; Zubieta, J. Inorg. Chem. 2007, 46, 9067.
18. Zhai, Q.-G; Lu, C.-Z.; Wu, X.-Y.; Batten, S. R. Crvst. Growth Des. 2007, 7, 2332.
19. (a) Lippert, B. Coord. Chem. Rev: 2000, 200, 487. (b) BugellaAltamirano, E.; Choquesillo-Lazarte, D.; Gonzalez-Perez, J. M.; Sánchez-Moreno, M. J.; Maain-Sànchez, R.; Martin-Ramos, J. D.; Covelo, B.; Carballo, R.; Castineiras, A.; Niclös-Gutiérez, J. Inorg. Chim Acta 2002, 339, 160. (c) Marzotto, A.; Clemente, D. A.: Ciccarese A.; Valle, G J. Crystallog: Spectrosc. Res. 1993, 23, 119 .
20. Gorter, S.; Engelfriet, D. W. Acta Constallogr: Sect. B 1981, 37, 1214.
21. Cebrian-Losantos, B.; Krokhin, A. A.; Stepanenko, I. N.; Eichinger, R.; Jakupec, M. A.; Arion, V. B.; Keppler, B. K. Inorg. Chem. 2007, 46, 5023.
22. (a) Park, H.; Briten, J. F.; Mueller, L.; Lee, J. Y.; Li, J.; Parise, J. B. Chem. Mater: 2007, 19, 1302. (b) Park, H.; Krigsfeld, G; Parise, J. B. Crist. Growh Des. 2007, 7, 736.

[^0]:

[^1]: Symmetry code: : $1=-x+1,-y+1,-=+1$

