DOI QR코드

DOI QR Code

DFT Conformational Study of Calix[5]arene and Calix[4]arene: Hydrogen Bond

  • Published : 2008.10.20

Abstract

We have performed DFT calculations to investigate the conformational characteristics and hydrogen bonds of the p-tert-butylcalix[5]arene (1) and p-tert-butylcalix[4]arene (2). The structures of different conformers of 1 were optimized by using B3LYP/6-31+G(d,p) method. The relative stability of the various conformers of 1 is in the following order: cone (most stable) > 1,2-alternate > partial-cone > 1,3-alternate. The relative stability of four conformers of 2 is in the following order: cone (most stable) > partial-cone > 1,2-alternate > 1,3-alternate. The primary factor affecting the relative stabilities of the various conformers of the 1 and 2 are the number and strength of the intramolecular hydrogen bonds. The hydrogen-bond distances are discussed based on different calculation methods.

Keywords

References

  1. Calixarenes in Action; Mandolini, L.; Ungaro, R., Eds.; World Scientific Publishers Co.: Singapore, 2007
  2. Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: Cambridge, 1998
  3. Calixarenes 50th Anniversary: Commemorative Volume; Vicens, J.; Asfari, Z.; Harrowfield, J. M., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991
  4. Gutsche, C. D. Calixarenes; Royal Society of Chemistry: Cambridge, 1989
  5. Calixarenes: A Versatile Class of Macrocyclic Compounds; Vicens, J.; Böhmer, V., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1991
  6. Jeon, Y.-M.; Lim, T.-H.; Kim, J.-G.; Kim, J.-S.; Gong, M.-S. Bull. Korean Chem. Soc. 2007, 28, 816 https://doi.org/10.5012/bkcs.2007.28.5.816
  7. Tan, L. V.; Quang, D. T.; Lee, M. H.; Kim, T. H.; Kim, H.; Kim, J. S. Bull. Korean Chem. Soc. 2007, 28, 791 https://doi.org/10.5012/bkcs.2007.28.5.791
  8. Coruzzi, M.; Andreetti, G. D.; Bocchi, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 1982, 2, 1133
  9. Barrett, G.; McKervey, M. A.; Malone, J. F.; Walker, A.; Arnaud-Neu, F.; Guerra, L.; Schwing-Weill, M.-J. J. Chem. Soc. Perkin Trans. 2 1993, 1475
  10. Stewart, D. R.; Krawiec, M.; Kashyap, R. P.; Watson, W. H.; Gutsche, C. D. J. Am. Chem. Soc. 1995, 117, 586 https://doi.org/10.1021/ja00107a002
  11. Gordon, J. L. M.; Böhmer, V.; Vogt, W. Tetrahedron Lett. 1995, 36, 2445 https://doi.org/10.1016/0040-4039(95)00277-J
  12. Pappalardo, S.; Parisi, M. F. J. Org. Chem. 1996, 61, 8724 https://doi.org/10.1021/jo9615108
  13. Arnaud-Neu, F.; Fuangswasdi, S.; Notti A.; Pappalardo, S.; Parisi, M. Angew. Chem. Int. Ed. 1998, 37, 112 https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2<112::AID-ANIE112>3.0.CO;2-O
  14. Giannetto, M.; Mori, G.; Notti, A.; Pappalardo, S.; Paris, M. F. Anal. Chem. 1998, 70, 4631 https://doi.org/10.1021/ac9803840
  15. Salvo, G. D.; Gattuso, G.; Notti, A.; Parisi, M.; Pappalardo, S. J. Org. Chem. 2002, 67, 684 https://doi.org/10.1021/jo015982k
  16. Ninagawa, A.; Matsuda, H. Makromol. Chem. Rapid Commun. 1982, 3, 65 https://doi.org/10.1002/marc.1982.030030112
  17. Markowitz, M. A.; Janout, V.; Castner, D. G.; Regen, S. L. J. Am. Chem. Soc. 1989, 111, 8192 https://doi.org/10.1021/ja00203a020
  18. Souley, B.; Asfari, Z.; Vicens, J. Polish J. Chem. 1992, 66, 959
  19. Kamerer, H.; Happel, G.; Mathiasch, B. Makromol. Chem. 1981, 182, 1685 https://doi.org/10.1002/macp.1981.021820609
  20. Souley, B.; Asfari, Z.; Vicens, J. Polish J. Chem. 1993, 67, 763
  21. Gutsche, C. D. Top. Curr. Chem. 1984, 123, 1 https://doi.org/10.1007/3-540-13099-3_1
  22. Gutsche, C. D. Acc. Chem. Res. 1983, 16, 161 https://doi.org/10.1021/ar00089a003
  23. Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc., Chem. Comm. 1979, 1005
  24. Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.; Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.; Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165 https://doi.org/10.1021/ja00167a010
  25. Gutsche, C. D.; Iqbal, M. Org. Syn. 1990, 68, 234 https://doi.org/10.15227/orgsyn.068.0234
  26. Groonen, L. C.; van Loon, J.-D.; Verboom, W.; Harkema, S.; Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385 https://doi.org/10.1021/ja00007a006
  27. Choe, J.-I.; Lee, S. H.; Oh, D.-S.; Chang, S.-K.; Nanbu, S. Bull. Korean Chem. Soc. 2004, 25, 190 https://doi.org/10.5012/bkcs.2004.25.2.190
  28. Harada, T.; Rudzinski, J. M.; Shinkai, S. J. Chem. Soc., Perkin Trans. 1992, 2, 2109
  29. Harada, T.; Rudzinski, J. M.; Shinkai, S. Tetrahedron 1993, 49, 5941 https://doi.org/10.1016/S0040-4020(01)87180-5
  30. Harada, T.; Ohseto, F.; Shinkai, S. Tetrahedron 1994, 50, 13377 https://doi.org/10.1016/S0040-4020(01)89345-5
  31. van Hoorn, W. P.; Morshuis, M. G. H.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Phys. Chem. 1998, 102, 1130 https://doi.org/10.1021/jp973103l
  32. van Hoorn, W. P.; Briels, W. J.; van Duynthoven, J. P. M.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Org. Chem. 1998, 63, 1299 https://doi.org/10.1021/jo972134+
  33. Blixt, J.; Detellier, C. J. Am. Chem. Soc. 1995, 117, 8536 https://doi.org/10.1021/ja00138a007
  34. Fukazawa, Y.; Yoshimura, K.; Sasaki, S.; Yamazaki, M.; Okajima, T. Tetrahedron 1996, 52, 2301 https://doi.org/10.1016/0040-4020(95)01047-5
  35. Bernardino, R. J.; Costa Cabral, B. J. J. Phys. Chem. A 1999, 103, 9080 https://doi.org/10.1021/jp991213h
  36. Bernardino, R. J.; Costa Cabral, B. J.; Pereira, J. L. C. J. Mol. Struc. (THEOCHEM) 1998, 23, 455
  37. Kim, K. S.; Suh, S. B.; Kim, J. C.; Hong, B. H.; Lee, E. C.; Yun, S.; Tarakeshwar, P.; Lee, J. Y.; Kim, Y.; Ihm, H.; Kim, H. G.; Lee, J. W.; Kim, J. K.; Lee, H. M.; Kim, D.; Cui, C.; Youn, S. J.; Chung, H. Y.; Choi, H. S.; Lee, C.-W.; Cho, S. J.; Jeong, S.; Cho, J.-H. J. Am. Chem. Soc. 2002, 124, 14268 https://doi.org/10.1021/ja0259786
  38. Riehn, C.; Reimann, B.; Buchhold, K.; Barth, H.-D.; Vaupel, S.; Brutschy, B.; Tarakeshwar, P.; Kim, K. S. J. Chem. Phys. 2001, 115, 10045 https://doi.org/10.1063/1.1415457
  39. Choe, J.-I.; Lee, S. H.; Oh, D.-S. Bull. Korean Chem. Soc. 2004, 25, 55 https://doi.org/10.5012/bkcs.2004.25.1.055
  40. Choe, J.-I.; Chang, S.-K. Bull. Korean Chem. Soc. 2002, 23, 48 https://doi.org/10.5012/bkcs.2002.23.1.048
  41. Choe, J.-I.; Chang, S.-K.; Satoshi, M.; Nanbu, S. Bull. Korean Chem. Soc. 2003, 24, 75 https://doi.org/10.5012/bkcs.2003.24.1.075
  42. Choe, J.-I.; Lee, S. H. Bull. Korean Chem. Soc. 2004, 25, 553 https://doi.org/10.1007/s11814-008-0093-3
  43. HyperChem Release 7.5; Hypercube, Inc.: Waterloo, Ontario, Canada, 2002
  44. Choe, J.-I.; Kim, K.; Chang, S.-K. Bull. Korean Chem. Soc. 2000, 21, 465 https://doi.org/10.1007/BF02705436
  45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A.11.3; Gaussian, Inc.: Pittsburgh, PA, 1998
  46. Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford Univ. Press: Cambridge, 1997
  47. Pak, C.: Lee, H. M.; Kim, J. C.; Kim, D.; Kim, K. S. Struct. Chem. 2005, 16, 187 https://doi.org/10.1007/s11224-005-4445-x
  48. Cambridge Structure Database; Cambridge Crystallographic Data Centre: Cambridge, U. K., 2008
  49. Atwood, J. L.; Barbour, L. J.; Heaven, M. W.; Raston, C. L. Angew. Chem. 2003, 42, 3254 https://doi.org/10.1002/anie.200351033
  50. Clark, T. E.; Makha, M.; Raston, C. L.; Sobolev, A. N. Cryst. Growth Des. 2006, 6, 2783 https://doi.org/10.1021/cg0605279
  51. Brouwer, E. B.; Udachin, K. A.; Enright, G. D.; Ripmeester, J. A. Chem.Commun. 2000, 1905
  52. Agnihotri, P.; Suresh, E.; Paul, P.; Ghosh, P. K. Eur. J. Inorg. Chem. 2006, 3369
  53. Lee, S. J.; Chung, H. Y.; Kim, K. S. Bull. Korean Chem. Soc. 2004, 25, 1061 https://doi.org/10.5012/bkcs.2004.25.7.1061
  54. Chem3D, Version 7.0; Cambridge Soft: Cambridge, MA, U.S.A., 2001
  55. Keller, S. W.; Schuster, G. M.; Tobiason, F. L. Polym. Mater. Sci. Eng. 1987, 57, 906
  56. Clark, T. J. Mol. Struc. (Theochem) 2000, 530, 1 https://doi.org/10.1016/S0166-1280(00)00581-9

Cited by

  1. Elucidating the Ring Inversion Mechanism(s) for Biscalixarenes vol.118, pp.36, 2014, https://doi.org/10.1021/jp5070616
  2. Toward Understanding of the Lower Rim Binding Preferences of Calix[4]arene vol.119, pp.22, 2015, https://doi.org/10.1021/acs.jpca.5b02624
  3. Lanthanide ion complexes of deprotonated p-isopropylcalix[n]arenes in dipolar aprotic solvents vol.85, pp.1-2, 2016, https://doi.org/10.1007/s10847-016-0606-3
  4. Columnar self-assembly, gelation and electrochemical behavior of cone-shaped luminescent supramolecular calix[4]arene LCs based on oxadiazole and thiadiazole derivatives vol.43, pp.4, 2019, https://doi.org/10.1039/C8NJ04922J
  5. DFT Conformational Study of the Monomethoxycalix[5]arene vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2152
  6. DFT Conformational Study of Calix[6]arene: Hydrogen Bond vol.30, pp.4, 2008, https://doi.org/10.5012/bkcs.2009.30.4.837
  7. A DFT study on a calix[5]crown-based heteroditopic receptor vol.22, pp.6, 2008, https://doi.org/10.1080/10610271003678529
  8. Synthesis, FT-IR, FT-Raman, dispersive Raman and NMR spectroscopic study of a host molecule which potential applications in sensor devices vol.94, pp.None, 2008, https://doi.org/10.1016/j.saa.2012.03.070
  9. A theoretical study of the conformational preference of alkyl- and aryl-substituted pyrogallol[4]arenes and evidence of the accumulation of negative electrostatic potential within the cavity of their vol.40, pp.4, 2008, https://doi.org/10.1080/08927022.2013.806806
  10. Theoretical study on conformational features and cation-binding properties of a diquinone calix[4]arene vol.26, pp.1, 2008, https://doi.org/10.1080/10610278.2013.817675
  11. Investigation of hydrogen bonding in p-sulfonatocalix[4]arene and its thermal stability by vibrational spectroscopy vol.1195, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2019.06.008
  12. Vibrational spectra study of p-sulfonatocalix[4]arene containing azobenzene groups vol.1200, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2019.127058
  13. FT-IR and FT-Raman study of p-sulfonatocalix [8]arene vol.1203, pp.None, 2008, https://doi.org/10.1016/j.molstruc.2019.127474
  14. Study of the conformation and hydrogen bonds of the p-tetrasulfonatothiacalix[4]arene pentasodium salt by vibrational spectroscopy and DFT vol.27, pp.11, 2008, https://doi.org/10.1007/s00894-021-04905-y