DOI QR코드

DOI QR Code

Synthesis of Novel Platinum Precursor and Its Application to Metal Organic Chemical Vapor Deposition of Platinum Thin Films

  • Lee, Sun-Sook (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Ho-Min (Department of Materials Science and Engineering, Korea University) ;
  • Park, Min-Jung (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • An, Ki-Seok (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Kwon (Department of Chemistry, Gongju National University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University) ;
  • Chung, Taek-Mo (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Chang-Gyoun (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • Published : 2008.08.20

Abstract

A novel platinum aminoalkoxide complex, Pt$(dmamp)_2$ has been prepared by the reaction of cis-$(py)_2PtI_2$ with two equivalents of Na(dmamp) (dmamp = 1-dimethylamino-2-methyl-2-propanolate). Single-crystal X-ray crystallographic analysis shows that the Pt(dmamp)2 complex keeps a square planar geometry with each two nitrogen atoms and two oxygen atoms having trans configuration. Platinum films have been deposited on TaN/ Ta/Si substrates by metal organic chemical vapor deposition (MOCVD) using Pt$(dmamp)_2$. As-deposited platinum thin films did not contain any appreciable amounts of impurities except a little carbon. As the deposition temperature was increased, the films resistivity and deposition rate increased. The electrical resistivity (13.6 $\mu\Omega$cm) of Pt film deposited at 400 ${^{\circ}C}$ is a little higher than the bulk value (10.5 $\mu\Omega$cm) at 293 K. The chemical composition, crystalline structure, and morphology of the deposited films were investigated by X-ray photoelectron spectroscopy, X-ray diffraction, and atomic force microscopy.

Keywords

References

  1. Kwon, J.-H.; Yoon, S.-G. Thin Solid Films 1997, 303, 136 https://doi.org/10.1016/S0040-6090(97)00003-5
  2. Bindera, P.; Roldan, J. J. Electrochem. Soc. 1985, 132, 2581 https://doi.org/10.1149/1.2113628
  3. Chatterjee, R.; Fukutomi, M.; Aoki, S.; Togano, K.; Macda, H. Appl. Phys. Lett. 1994, 65, 109 https://doi.org/10.1063/1.113049
  4. Hazumi, S.; Asano, T.; Hattori, M.; Nakashima, H.; Kobayashi, I.; Okada, M. Jpn. J. Appl. Phys. 1995, 34, 5086 https://doi.org/10.1143/JJAP.34.5086
  5. Qi, W.-J.; Nieh, R.; Lee, B. H.; Kang, L.; Jeon, Y.; Lee, J. C. Appl. Phys. Lett. 2000, 77, 3269 https://doi.org/10.1063/1.1326482
  6. Hwang, C. S.; Lee, B. T.; Kang, C. S.; Kim, J. W.; Lee, K. H.; Cho, H.-J.; Horii, H.; Kim, W. D.; Lee, S. I.; Roh, Y. B. J. Appl. Phys. 1998, 83, 3703 https://doi.org/10.1063/1.366595
  7. Valet, O.; Doppelt, P.; Baumann, P. K.; Schumacher, M.; Balnois, E.; Bonnet, F.; Guillon, H. Microelectronic Engineering 2002, 64, 457 https://doi.org/10.1016/S0167-9317(02)00821-3
  8. Sivaram, S. Chemical Vapor Deposition; Van Nostrand Reinhold: New York, 1995
  9. Garrido-Suarez, C.; Braichotte, D.; Bergh, H. V. D. Appl. Phys. A 1988, 46, 285 https://doi.org/10.1007/BF01210348
  10. Gilgen, H. H.; Cacouris, T.; Shaw, P. S.; Krchnavek, R. R.; Osgood, R. M. Appl. Phys. B 1987, 42, 55 https://doi.org/10.1007/BF00694811
  11. Goswami, J.; Wang, C.-G.; Cao, W.; Dey, S. K. Chem. Vap. Deposition 2003, 9, 213 https://doi.org/10.1002/cvde.200306240
  12. Rand, M. J. J. Electrochem. Soc. 1973, 120, 686 https://doi.org/10.1149/1.2403534
  13. Rand, M. J. J. Electrochem. Soc. 1975, 122, 811 https://doi.org/10.1149/1.2134328
  14. Braichotte, D.; Bergh, H. V. D. Appl. Phys. A 1989, 49, 189 https://doi.org/10.1007/BF00616298
  15. Tagge, C. D.; Simpson, R. D.; Giroman, R. G.; Nuzzo, R. G. J. Am. Chem. Soc. 1996, 118, 2634 https://doi.org/10.1021/ja9526527
  16. Park, J. W.; Jang, H. S.; Kim, M.; Sung, K.; Lee, S. S.; Chung, T.- M.; Koo, S.; Kim, C. G.; Kim, Y. Inorg. Chem. Commun. 2003, 7, 463 https://doi.org/10.1016/j.inoche.2003.12.022
  17. Yang, T. S.; Cho, W.; Kim, M.; An, K.-S.; Chung, T.-M.; Kim, C. G.; Kim, Y. J. Vac. Sci. Technol. A 2005, 23, 1238 https://doi.org/10.1116/1.1875172
  18. You, Y.-H.; So, B.-S.; Hwang, J.-H.; Cho, W.; Lee, S. S.; Chung, T.-M.; Kim, C. G.; An, K.-S. Appl. Phys. Lett. 2006, 89, 222105 https://doi.org/10.1063/1.2392991
  19. Min, K.-C.; Kim, M.; You, Y.-H.; Lee, S. S.; Lee, Y. K.; Chung, T.-M.; Kim, C. G.; Hwang, J.-H.; An, K.-S.; Lee, N.-S.; Kim, Y. Surf. Coat. Technol. 2007, 201, 9252 https://doi.org/10.1016/j.surfcoat.2007.04.120
  20. Kauffman, G. B. Inorg. Synth. 1963. 7, 249 https://doi.org/10.1002/9780470132388.ch65
  21. Galanski, M.; Baumgartner, C.; Arion, V.; Keppler, B. K. Eur. J. Inorg. Chem. 2003, 2619
  22. Galanski, M.; Baumgartner, C.; Meelich, K.; Arion, V. B.; Fremuth, M.; Jakupec, M. A.; Schluga, P.; Hartinger, C. G.; Keyserlingk, N. G. v.; Keppler, B. K. Inorg. Chim. Acta 2000, 357, 3237 https://doi.org/10.1016/j.ica.2004.04.003

Cited by

  1. Synthesis and Characterization of Nickel(II) Aminoalkoxides: Application to Molecular Precursors for MOCVD of Ni Thin Films vol.2011, pp.11, 2011, https://doi.org/10.1002/ejic.201001132
  2. Synthesis and Characterization of Novel Volatile Imido-Aminoalkoxide Tantalum Compounds vol.31, pp.23, 2012, https://doi.org/10.1021/om300436p
  3. Volatile Iridium and Platinum MOCVD Precursors: Chemistry, Thermal Properties, Materials and Prospects for Their Application in Medicine vol.11, pp.1, 2008, https://doi.org/10.3390/coatings11010078