DOI QR코드

DOI QR Code

Background Subtraction Algorithm by Using the Local Binary Pattern Based on Hexagonal Spatial Sampling

육각화소 기반의 지역적 이진패턴을 이용한 배경제거 알고리즘

  • 최영규 (한국기술교육대학교 정보기술공학부)
  • Published : 2008.12.31

Abstract

Background subtraction from video data is one of the most important task in various realtime machine vision applications. In this paper, a new scheme for background subtraction based on the hexagonal pixel sampling is proposed. Generally it has been found that hexagonal spatial sampling yields smaller quantization errors and remarkably improves the understanding of connectivity. We try to apply the hexagonally sampled image to the LBP based non-parametric background subtraction algorithm. Our scheme makes it possible to omit the bilinear pixel interpolation step during the local binary pattern generation process, and, consequently, can reduce the computation time. Experimental results revealed that our approach based on hexagonal spatial sampling is very efficient and can be utilized in various background subtraction applications.

동영상에서의 배경제거는 다양한 실시간 머신 비젼 응용에서 매우 중요한 단계이다. 본 논문에서는 이러한 배경제거를 위한 육각화소 기반의 새로운 접근 방법을 제안한다. 일반적으로 육각형 샘플링 영상은 양자화 오차가 적으며, 이웃화소의 연결성 정의를 크게 개선한다고 알려져 있는데, 제안된 방법은 비매개변수형 배경제거 방법의 하나인 지역적 이진패턴 기반 알고리즘에 이러한 육각 샘플링 영상을 적용하는 것을 특징으로 한다. 이를 통해, 지역적 이진패턴의 추출과정에서 필요한 쌍선형 보간을 없애고 계산량을 줄일 수 있었다. 실험을 통해 이러한 육각화소의 적용이 배경제거 분야에 매우 효율적으로 적용될 수 있음을 확인할 수 있었다.

Keywords

References

  1. 조태훈, 최영규, “다중 배경 분포를 이용한 움직임 검출”, 정보처리학회논문지, 8권 4호, pp.381-389, 2001
  2. N. McFarlane and C. Schofield, “Segmentation and Tracking of Piglets in Images,” Machine Vision Applicaton, Vol.8, pp.187-193, 1995 https://doi.org/10.1007/BF01215814
  3. C. Wren, A. Azarbayejani, T. Darrell and A. Pentland, “Pfinder: Real-Time Tracking of the Human Body,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.19, No.7, pp.780-785, July, 1997 https://doi.org/10.1109/34.598236
  4. C. Stauffer and W. Grimson, “Adaptive Background Mixture Models for Real-Time Tracking,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Vol.2, pp.246-252, 1999 https://doi.org/10.1109/CVPR.1999.784637
  5. A. Elgammal, R. Duraiswami, D. Harwood and L.S. Davis, “Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance,” Proc. IEEE, Vol.90, No.7, pp.1151-1163, 2002 https://doi.org/10.1109/JPROC.2002.801448
  6. K. Kim, T. Chalidabhongse, D. Harwood and L. Davis, “Background Modeling and Subtraction by Codebook Construction,” Proc. IEEE International Conf. Image Processing, Vol.5, pp.3061-3064, 2004 https://doi.org/10.1109/ICIP.2004.1421759
  7. M. Heikkila, M. Pietikainen and J. Heikkila, “A Texture-Based Method for Detecting Moving Objects,” Proc. British Machine Vision Conf., Vol.1, pp.187-196, 2004
  8. M. Heikkila and M. Pietikainen, “A Texture-Based Method for Modeling the Background and Detecting Moving Objects,” IEEE Trans. on PAMI, Vol.28, No.4, pp.657-662, April, 2006 https://doi.org/10.1109/TPAMI.2006.68
  9. G. Zhao and M. Pietikainen, “Dynamic texture recognition using local binary patterns with an application to facial expressions,” IEEE Trans. on PAMI, Vol.29, No.6, pp.915-928, 2007 https://doi.org/10.1109/TPAMI.2007.1110
  10. B. Horn, “Robot Vision,” MIT Press, Cambridge, MA, USA, 1986
  11. B. Camgar-Parsi and W. Sander, “Quantization error in spatial sampling: comparison between square and hexagonal pixels,” Proc. CVPR, 1989, pp.604-611 https://doi.org/10.1109/CVPR.1989.37908
  12. T. I. Cho and K. H. Park, “Hexagonal edge relaxation,” Electronics Letters, Vol.28, No.4, pp.357-358, 1992 https://doi.org/10.1049/el:19920223