DOI QR코드

DOI QR Code

Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City between 2006 and 2007

2006~2007년 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성

  • 이형배 (상명대학교 대학원 토목환경공학과) ;
  • 오세원 (상명대학교 환경공학과)
  • Published : 2008.10.31

Abstract

Size-segregated mass and ion concentrations of atmospheric aerosols in Cheonan City were measured using a high volume air sampler equipped with a 5-stage cascade impactor and a ion chromatography between March 2006 and April 2007. The mean values of 24-hr average concentrations of TSP, PM10, PM2.5, and PM1 were 61.7, 55.2, 43.7, $33.2{\mu}g/m^3$, respectively. Mass size distributions of atmospheric aerosols were bimodal distributions with a saddle point in $1.5\;{\sim}\;3.0{\mu}m$ range in diameter separating coarse and fine particle modes. Fine particles, PM2.5 were 70.8% of the total mass of aerosols. Major ion components in aerosols were ${NH_{4}}^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$ for cations, and ${SO_{4}}^{2-}$, ${NO_{3}}^-$, $Cl^-$ for anions. ion components occupied 37.4% of coarse particles and 46.2% of fine particles in mass.

충청남도, 천안시 대기 에어로졸의 입경별 농도 및 이온성분 특성을 분석하고자, 2006년 3월부터 2007년 4월까지 천안시 상명대학교에서 Cascade Impactor를 장착한 High Volume Air Sampler를 이용하여 대기 시료를 채취 분석하였다. 입경별 에어로졸의 일평균농도는 TSP, PM10, PM2.5, PM1이 각각 61.7, 55.2, 43.7, $33.2{\mu}g/m^3$였으며, 직경이 $1{\sim}3{\mu}m$인 영역을 경계로 조대영역과 미세영역으로 나누어지는 전형적인 도심지 특성을 나타냈다. 이 중 미세영역입자인 PM2.5이 전체 에어로졸의 70.8%를 차지하였다. 이들 에어로졸 입자의 성분 분석 결과 양이온은 ${NH_{4}}^+$, $Na^+$, $K^+$, $Ca^{2+}$, $Mg^{2+}$이, 음이온은 ${SO_{4}}^{2-}$, ${NO_{3}}^-$, $Cl^-$가 주요 성분이었으며, 이들 수용성 이온이 차지하는 비율은 조대입자에서 37.4%, 미세입자에서 46.2%였다.

Keywords

References

  1. Seinfeld J. H. and Pandis S. N., Atmospheric Chemistry and Physics, pp. 408-448, John Wiley & Sons, New York, 1988.
  2. 환경부, 환경백서 2006, pp. 395-396, 2007.
  3. Smith K. R., “Why particles?”, Chemosphere, 49, pp. 867-871, 2002. https://doi.org/10.1016/S0045-6535(02)00235-7
  4. Seinfeld, J. H., Andino, J. M., Bowman, F. M., Forstner, H. J., Pandis, S., "Tropospheric Chemistry", Advances in Chemical Engineering, 19, pp. 325-407, 1994. https://doi.org/10.1016/S0065-2377(08)60217-3
  5. Chow, J. C., "Measurement Methods to Determine Compliance with Ambient Air Quality Standards for Suspended Particles", Journal of the Air and Waste Management Association, 45, pp. 320-382, 1995. https://doi.org/10.1080/10473289.1995.10467369
  6. Willeke, K. and Whitby K. T., "Atmospheric aerosols: size distribution interpretation", Journal of the Air Pollution Control Association, 25, pp. 529-534, 1975. https://doi.org/10.1080/00022470.1975.10470110
  7. Houthuijs D., Breugelmans O., Hoek G., Vaskovi E., Mihalikova E., Pastuszka J. S., Jirik V., Sachelarescu S., Lolova D., Meliefste K., Uzunova E., Marinescu C., Volf J., de Leeuw F., van de Wiel H., Fletcher T., Lebret E., Brunekreef B., "PM10 and PM2.5 concentrations in Central and Eastern Europe: results from the Cesar study", Atmospheric Environment, 35, pp. 2757-2771, 2001. https://doi.org/10.1016/S1352-2310(01)00123-6
  8. Blanchard C. L., Carr E. L., Collins J. F., Smith T. B., Lehrman D. E., Michaels H. M., "Spatial representativeness and scales of transport during the 1995 integrated monitoring study in California's San Joaquin Valley", Atmospheric Environment, 33, pp. 4775-4786, 1999 https://doi.org/10.1016/S1352-2310(99)00284-8
  9. Wang G., Wang H., Yu, Y., Gao, S., Feng, J., Gao S., Wang. L., "Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China", Atmospheric environment, 37, pp. 2893-2902, 2003 https://doi.org/10.1016/S1352-2310(03)00271-1

Cited by

  1. Mass Size Distribution of Atmospheric Aerosol Particles with Nanosampler Cascade Impactor in Jinju City vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.679