주정박을 이용한 고체발효 조건의 최적화

Optimization of Solid-State Fermentation Condition Using Distiller's Dried Grain

  • 최기욱 ((주)창해에탄올 창해연구소) ;
  • 문세권 ((주)창해에탄올 창해연구소) ;
  • 김율 ((주)창해에탄올 창해연구소) ;
  • 장병욱 ((주)창해에탄올 창해연구소) ;
  • 김영란 (전북대학교 화학공학부) ;
  • 정봉우 (전북대학교 화학공학부)
  • Choi, Gi-Wook (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Moon, Se-Kwon (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Kim, Yule (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Jang, Byung-Wook (Changhae Institute of Cassava & Ethanol Research, Changhae Ethanol Co., Ltd.) ;
  • Kim, Young-Ran (Chonbuk National University, School of Chemical Engineering) ;
  • Chung, Bong-Woo (Chonbuk National University, School of Chemical Engineering)
  • 발행 : 2008.08.29

초록

본 연구는 에탄올 생산 부산물인 주정박의 사료로서의 가치를 향상시키고 효소 활성을 유지하면서 아미노산이 다량 함유된 발효 사료를 개발하기 위한 고체 발효 조건을 최적화하는데 목적을 두었다. 사용된 균주의 pH에 대한 영향을 살펴본 결과, pH 4에서 효소 활성이 우수하였으며 또한 이 조건은 낮은 pH 조건이므로 잡균에 대한 오염도 예방 할 수 있어 본 실험의 최적 액체배양 조건임을 확인할 수 있었다. 고체 배양을 위한 배양 조건 탐색에서는 60%의 수분을 함유한 고체 배양에서 가장 좋은 효소 활성의 결과를 나타내었으며 적정 배지 조성을 위한 혼합 비율 탐색의 경우 밀기울 함량이 높고 DDG 함량이 낮을수록 효소 활성은 좋았으나 아미노산 함량은 낮은 반면, DDG 함량이 높고 밀기울 함량이 낮을수록 효소 활성은 낮았지만 아미노산 함량은 높은 결과를 나타내었다. 따라서 효소활성 ($\geqq$ 1,000 U/g) 및 아미노산 함량 ($\geqq$ 28%)이 적당한 고체 발효 배지 조성의 비율은 DDG와 밀기울이 1 : 4였다. 이렇게 해서 얻어진 결과로 약 1 ton 정도의 발효 사료 시제품을 생산하였으며 시제품의 효소활성과 조단백질 함량은 각각 1,024 U/g과 33.6%였다.

To enhance the value as a feedstuff of distiller's dried grain (DDG) and develop fermented feedstuff, we investigated the effects of the culture conditions affecting glucoamylase activity, such as pH in submerged culture and moisture content in solid-state culture. Also, we investigated the optimal mixing ratio of DDG and wheat bran for the production of fermented feedstuff containing high content of amino acids. In culture conditions for high fermented activity, pH and moisture were optimum at pH 4 and 60%, respectively. In the case of mixing ratio, the glucoamylase activity was decreased with increase of DDG content. On the other hand, the content of crude protein was increased slowly. For the development of fermented feedstuff, the optimal mixing ratio of DDG and wheat bran was 1 to 4. Finally, we could produce approximately 1 ton (dry matter) of trial product in incubator of pilot-scale. The glucoamylase activity and the crude protein content were 1,024 U/g and 33.6%, respectively.

키워드

참고문헌

  1. Fontaine, J., U. Zimmer, P. J. Moughan, and S. M. Rutherfurd (2007), Effect of heat damage in an autoclave on the reactive lysine contents of soy products and corn distillers dried grains with solubles. Use of the results to check on lysine damage in common qualities of these ingredients, J. Agr. Food. Chem. 55, 10737-10734 https://doi.org/10.1021/jf071747c
  2. Rausch, K. D. and R. L. Belyea (2006), The future of coproducts from corn processing, Appl. Biochem. Biotech. 128, 47-86 https://doi.org/10.1385/ABAB:128:1:047
  3. Ganesan, V., K. A. Rosentrater, and K. Muthukumarappan (2007), Modeling the flow properties of DDGS, Cereal. Chem. 84, 556-562 https://doi.org/10.1094/CCHEM-84-6-0556
  4. Song, M. H. (2005), Nutritional components and nutritive value of corn-DDGS about milk cow, beef cattle, pig, and fowl, Kofeed, 15, 44-51
  5. Chiang, Y. H., T. H. Kang, K. H. Lee, and I. D. Lee (1982), Chemical composition and metabolizable energy in distillers sweet potato and naked barley, Korean J. Anim. Sci. 24, 248-252
  6. Ryu, W. J. (2007), Recently supply and demand & price trend of DDGS, Kofeed. 24, 68-73
  7. Kim, D., J. P. Fan, D. Choi, H, Park, and G. D. Han (2007), Effects of fermented rice bran addition on the quality improvement of pork, Korean J. Food, Sci. Technol. 39, 608-613
  8. Park, B. K., J. M. Gil, J. B. Kim, B. J. Hong, C. S. Ra, and J. S. Shin (2003), Effects of fermented Feedstuff with wet brewer's grain and soybean on fattening performance and carcass grade in Hanwoo steers, J. Anim. Sci. & Technol.(Kor) 45, 397-408 https://doi.org/10.5187/JAST.2003.45.3.397
  9. Kim, J. S. and M. S. Heu (2004), Preparation and Keeping quality of proteolytic enzymes from seafood processing wastes, J. Kor. Fish. Soc. 37, 259-268
  10. Kim, H. J., J. H. Cho, Y. J. Chen, J. S. Yoo, S. O. Shin, Y. Huang, and I. H. Kim (2007), Effects of plant protein source containing multiezyme on performance and milk characteristics in sow, J. Anim. Sci & Technol.(Kor.) 49, 745-752 https://doi.org/10.5187/JAST.2007.49.6.745
  11. Shim, Y. H., B. J. Chae, and J. H. Lee (2003), Effects of dietary carbohydrase enzyme complex and microbial phytase supplementation on productivity and nutrient digestibility in growing pigs, J. Anim. Sci. & Technol.(Kor) 45, 569-576 https://doi.org/10.5187/JAST.2003.45.4.569
  12. Morgavi, D. P., C. J. Newbold, D. E. Beever, and R. J. Wallace (2000), Stability and stabilization of potential feed additive enzymes in rumen fluid, Enzyme. Microb. Tech. 26, 171-177 https://doi.org/10.1016/S0141-0229(99)00133-7
  13. Colombatto D., F. L. Mould, M. K. Bhat, and E. Owen (2003), Use of fibrolytic enzymes to improve the nutritive value of ruminant diets - A biochemical and in vitro rumen degradation assessment, Anim. Feed. Sci. Tech. 107, 201-209 https://doi.org/10.1016/S0377-8401(03)00126-3
  14. Eun, J. S., K. A. Beauchemin, and H. Schulze (2007), Use of exogenous fibrolytic enzymes to enhance in vitro fermentation of alfalfa hay and corn silage, J. Dairy. Sci. 90, 1440-1451 https://doi.org/10.3168/jds.S0022-0302(07)71629-6
  15. Moon, B. J., Y. K. Kim, C. T. Cho, and D. J. Kim (1989), Study on the feeding value of fermented feed by Trichoderma viride, Kor. J. Anim. Nutr. Feed. 13, 264-270
  16. Mamma, D., E. Kourtoglou, and P. Christakopoulos (2008), Fungal multienzyme production on industrial by-products of the citrus-processing industry, Bioresource. Technol. 99, 2373-2383 https://doi.org/10.1016/j.biortech.2007.05.018
  17. Sandhya, C., A. Sumantha, G. Szakacs, and A. Pandey (2005), Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation, Process. Biochem. 40, 2689-2694
  18. Debing, J., L. Peijun, F. Stagnitti, X. Xianzhe, and L. Li (2006), Pectinase production by solid fermentation from Aspergillus niger by a new prescription experiment, Ecotox. Environ. Safe. 64, 244-250 https://doi.org/10.1016/j.ecoenv.2005.01.002
  19. Somogyi M. (1952), Notes on sugar determination. J. Biol. Chem. 195, 19-23
  20. AOAC (1995), Official Methods of Analysis, 16th ed, AOAC International, Arlington
  21. Moore, S. and W. H. Stein (1948), Photometric ninhydrin method for use in the chromatography of amino acid, J. Biol. Chem. 176, 367-388
  22. Rosfarizan, M. and A. B. Ariff (2006), Kinetics of kogic acid fermentation by Aspergillus flavus link S44-1 using sucrose as a carbon source under different pH conditions, Biotechnol. Bioprocess Eng. 11, 72-79 https://doi.org/10.1007/BF02931872
  23. Lai, L. T., T. Tsai, T. C. Wang, and T. Cheng (2005), The influence of culturing environments on lovastatin production by Aspergillus terreus in submerged cultures, Enzyme. Microb. Tech. 36, 737-748 https://doi.org/10.1016/j.enzmictec.2004.12.021
  24. Anto, H., U. B. Trivedi, and K. C. Patel (2006), Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate, Bioresource. Technol. 97, 1161-1166 https://doi.org/10.1016/j.biortech.2005.05.007
  25. Wang, Q., X. Wang, X. Wang, and H. Ma (2008), Glucoamylase production from food waste by Aspergillus niger under submerged fermentation, Process. Biochem. 43, 280-286 https://doi.org/10.1016/j.procbio.2007.12.010
  26. Kye, S. H., S. S. Kim, and K. M. Chee (1985), A study on improving protein quality of wheat bran by fermentation with Aspergillus oryzae, Korean J. Nutr. 18, 234-241