DOI QR코드

DOI QR Code

향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model

  • 이철희 (인하대학교 기계공학부) ;
  • 장민규 (인하대학교 대학원 기계공학부) ;
  • 최승복 (인하대학교 기계공학부)
  • 발행 : 2008.11.20

초록

In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

키워드

참고문헌

  1. Sakamoto, T., 1987, 'Normal Displacement and Dynamic Friction Characteristics in a Stick-slip Process', Tribology, Vol. 20, pp. 25-31 https://doi.org/10.1016/0301-679X(87)90005-3
  2. Paros, J. M. and Weisbord L., 1965, 'How to Design Flexure Hinge', Mach. Des., Vol. 37, pp. 151-157
  3. Choi S. B., Han S. S. and Lee Y. S., 2005, 'Fine Motion Control of a Moving Stage Using a Piezoactuator Associated with a Displacement Amplifier', Smart Mater. Struct., Vol. 14, pp. 222-230 https://doi.org/10.1088/0964-1726/14/1/022
  4. Armstrong-H'elouvry, B., 1991, Control of Machines with Friction, Kluwer Academic Publishers
  5. Her, I. and Chang, J. C., 1994, 'A Linear Scheme for the Displacement Analysis of Micropositioning Stages with Flexure Hinges', ASME Journal of Mechanical Design, Vol. 116, pp. 770-776 https://doi.org/10.1115/1.2919449
  6. Lin, L. C., Sheu J. W. and Tsay J. H., 2001, 'Modeling and Hierarchical Neuro-fuzzy Control for Flexure-based Micropositioning Systems', Journal of Intelligent & Robotic Systems, Vol. 32, pp. 411-435 https://doi.org/10.1023/A:1014228021873
  7. Yang, R., Jouaneh, M. and Schweizer, R., 1996, 'Design and Characterization of a Low-profileMicro-positioning Stage', Precision Engineering, Vol. 18, pp. 20-29 https://doi.org/10.1016/0141-6359(95)00032-1
  8. Jouaneh, M. and Yaun, R., 2003, 'Modeling of Flexure-hinge Type Lever Mechanisms', Precision Engineering, Vol. 27, pp. 407-418 https://doi.org/10.1016/S0141-6359(03)00045-X
  9. Armstrong-H'elouvry, B., Dupont, P. and Canudas de Wit, C., 1995, 'A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction', Automatica, Vol. 30, pp. 1083-1138 https://doi.org/10.1016/0005-1098(94)90209-7
  10. Kogut, L. and Etsion, I., 2004, 'A Static Friction Model for Elasto-plastic Contacting Rough Surfaces', ASME, J. Tribology, Vol. 126, p. 34 https://doi.org/10.1115/1.1609488
  11. Kim, J. H., Kim, S. h. and Kwak, Y. K., 2003, 'Optimization of a Piezoelectric Actuator using Bridge-type Hinge Mechanism', Journal of the Korean Society of Precision Eng., Vol. 20, No. 2, pp. 168-175
  12. Lobontiu, N. and Garcia, E., 2003, 'Analytical Model of Displacement Amplification and Stiffness Optimization for a Class of Flexure-based Compliant Mechanisms', Comput. Struct., Vol. 81, pp. 2797-2810 https://doi.org/10.1016/j.compstruc.2003.07.003
  13. Choi, M. K., Nguyen, Q. H., Yun, B. Y. and Choi, S. B., 2006, 'Design and Control of Jetting Dispenser 6Driven by Piezoelectric Actuator', Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 16, No. 11, pp. 1165-1171 https://doi.org/10.5050/KSNVN.2006.16.11.1165
  14. Karnopp, D., 1985, 'Computer Simulation of Slip-stick Friction in Mechanical Dynamic Systems', Journal of Dynamic Systems, Measurement and Control, Vol. 107, No. 1, pp. 100-103 https://doi.org/10.1115/1.3140698
  15. Xie, W., De Meter, E. C. and Trethwey M. W., 2000, 'An Experimental Evaluation of Coefficients of Static Friction of Common Workpiece-fixture Element Pairs', Int. J. Mach. Tools Manuf, Vol. 40, pp. 467-488 https://doi.org/10.1016/S0890-6955(99)00082-6
  16. Hwang, D. H. and Zum Gahr, K. H., 2003, 'Transition from Static to Kinetic Friction of Unlubricated or Oil Lubricated Steel/Steel, Steel/Ceramic and Ceramic/Ceramic Pairs,' Wear, Vol. 255, pp. 365-375 https://doi.org/10.1016/S0043-1648(03)00063-2
  17. Lee, C. H. and Polycarpou, A. A., 2007, 'Static Friction Experiments and Verification of an Improved Elastic-plastic Model Including Roughness Effects', ASME J. Tribology, Vol. 129, pp. 754-760 https://doi.org/10.1115/1.2768074
  18. Basava, S. and Hess, D. P., 1998, 'Bolted Joint Clamping Force Variation due to Axial Vibration', Journal of Sound and Vibration, Vol. 210, No. 2, pp. 255-265 https://doi.org/10.1006/jsvi.1997.1330