초록
혼합모형을 이용한 판별분석은 다중 분류문제를 해결하는데 유용한 방법으로서 준지도 학습으로 확장될 수 있다. 본 논문에서는 정규 혼합분포를 이용한 준지도 학습 방법에서 혼합 모형의 하위 구성요소 개수 선택 기준을 연구하고자 한다. 하위 구성요소 선택 기준으로서 베이지안 정보량을 사용하였고 모의실험을 통해 이 방법의 유용성을 규명하였다.
Discriminant analysis based on Gaussian mixture models, an useful tool for multi-class classifications, can be extended to semi-supervised learning. We consider a model selection problem for a Gaussian mixture model in semi-supervised learning. More specifically, we adopt Bayesian information criterion to determine the number of subclasses in the mixture model. Through simulations, we illustrate the usefulness of the criterion.