Inhibitory Effect of Amygdalin on Lipopolysaccharide-Inducible TNF-$\alpha$ and IL-l$\beta$ mRNA Expression and Carrageenan-Induced Rat Arthritis

  • Hwang, Hye-Jeong (Acupuncture and Meridian Science Research Center) ;
  • Lee, Hye-Jung (Acupuncture and Meridian Science Research Center) ;
  • Kim, Chang-Ju (Department of Physiology, College of Medicine, Kyung-Hee University) ;
  • Shim, In-Sop (Department of Integrative Medicine, Catholic University) ;
  • Hahm, Dae-Hyun (Acupuncture and Meridian Science Research Center)
  • Published : 2008.10.31

Abstract

Amygdalin is a cyanogenic glycoside plant compound found in the seeds of rosaceous stone fruits. We evaluated the anti-inflammatory and analgesic activities of amygdalin, using an in vitro lipopolysaccharide (LPS)-induced cell line and a rat model with carrageenan-induced ankle arthritis. One mM amygdalin significantly inhibited the expression of TNF-$\alpha$ and IL-l$\beta$ mRNAs in LPS-treated RAW 264.7 cells. Amygdalin (0.005, 0.05, and 0.1 mg/kg) was intramuscularly injected immediately after the induction of carrageenan-induced arthritic pain in rats, and the anti-arthritic effect of amygdalin was assessed by measuring the weight distribution ratio of the bearing forces of both feet and the ankle circumference, and by analyzing the expression levels of three molecular markers of pain and inflammation (c-Fos, TNF-$\alpha$, and IL-l$\beta$) in the spinal cord. The hyperalgesia of the arthritic ankle was alleviated most significantly by the injection of 0.005 mg/kg amygdalin. At this dosage, the expressions of c-Fos, TNF-$\alpha$, and IL-l$\beta$ in the spinal cord were significantly inhibited. However, at dosage greater than 0.005 mg/kg, the pain-relieving effect of amygdalin was not observed. Thus, amygdalin treatment effectively alleviated responses to LPS-treatment in RAW 264.7 cells and carrageenan-induced arthritis in rats, and may serve as an analgesic for relieving inflammatory pain.

Keywords

References

  1. Bethea, J. R., H. Nagashima, M. C. Acosta, C. Briceno, F. Gomez, A. E. Marcillo, K. Loor, J. Green, and W. D. Dietrich. 1999. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma 16: 851-863 https://doi.org/10.1089/neu.1999.16.851
  2. Buritova, J., V. Chapman, P. Honore, and J. M. Besson. 1997. The contribution of peripheral bradykinin B2 receptors to carrageenanevoked oedema and spinal c-Fos expression in rats. Eur. J. Pharmacol. 320: 73-80 https://doi.org/10.1016/S0014-2999(96)00872-2
  3. Chang, H. K., M. S. Shin, H. Y. Yang, J. W. Lee, Y. S. Kim, M. H. Lee, J. Kim, K. H. Kim, and C. J. Kim. 2006. Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cells. Biol. Pharm. Bull. 29: 1597-1602 https://doi.org/10.1248/bpb.29.1597
  4. Chang, H. K., H. Y. Yang, T. H. Lee, M. C. Shin, M. H. Lee, M. S. Shin, et al. 2005. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cyclooxygenase [correction of cycloostygenase]-2 and inducible nitric oxide synthase in mouse BV2 microglial cells. Biol. Pharm. Bull. 28: 449-454 https://doi.org/10.1248/bpb.28.449
  5. Choy, E. H. and G. S. Panayi. 2001. Cytokine pathways and joint inflammation in rheumatoid arthritis. N. Engl. J. Med. 344: 907-916 https://doi.org/10.1056/NEJM200103223441207
  6. DeLeo, J. A., R. W. Colburn, and A. J. Rickman. 1997. Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy. Brain Res. 759: 50-57 https://doi.org/10.1016/S0006-8993(97)00209-6
  7. Ellison, N. M., D. P. Byar, and G. R. Newell. 1978. Special report on Laetrile: The NCI Laetrile Review. Results of the National Cancer Institute's retrospective Laetrile analysis. N. Engl. J. Med. 299: 549-552 https://doi.org/10.1056/NEJM197809072991013
  8. Fukuta, T., H. Ito, T. Mukainaka, H. Tokuda, H. Nishino, and T. Yoshida. 2003. Anti-tumor promoting effect of glycosides from Prunus persica seeds. Biol. Pharm. Bull. 26: 271-273 https://doi.org/10.1248/bpb.26.271
  9. Handy, R. L. and P. K. Moore. 1998. A comparison of the effects of L-NAME, 7- NI and L-NIL on carrageenan-induced hindpaw edema and NOS activity. Br. J. Pharmacol. 123: 1119-1126 https://doi.org/10.1038/sj.bjp.0701735
  10. Holsapple, M. P., M. Schnur, and G. K. Yim. 1980. Pharmacological modulation of edema mediated by prostaglandin, serotonin and histamine. Agents Actions 10: 368-373 https://doi.org/10.1007/BF01971442
  11. Honore, P., J. Buritova, and J. M. Besson. 1995. Aspirin and acetaminophen reduced both Fos expression in rat lumbar spinal cord and inflammatory signs produced by carrageenin inflammation. Pain 63: 365-375 https://doi.org/10.1016/0304-3959(95)00065-8
  12. Laughlin, T. M., J. R. Bethea, R. P. Yezierski, and G. L. Wilcox. 2000. Cytokine involvement in dynorphin-induced allodynia. Pain 84: 159-167 https://doi.org/10.1016/S0304-3959(99)00195-5
  13. Lundeberg, T., P. Alstergren, A. Appelgren, B. Appelgren, J. Carleson, S. Kopp, and E. Theodorsson. 1996. A model for experimentally induced temperomandibular joint arthritis in rats: Effects of carrageenan on neuropeptide-like immunoreactivity. Neuropeptides 30: 37-41 https://doi.org/10.1016/S0143-4179(96)90052-9
  14. Moertel, C. G., T. R. Fleming, J. Rubin, L. K. Kvolis, G. Sarna, R. Koch, et al. 1982. A clinical trial of amygdalin (Laetrile) in the treatment of human cancer. N. Engl. J. Med. 306: 201-206 https://doi.org/10.1056/NEJM198201283060403
  15. Park, H. J., S. H. Yoon, L. S. Han, L. T. Zheng, K. H. Jung, Y. K. Uhm, et al. 2005. Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J. Gastroenterol. 11: 5156-5161
  16. Poon, A. and J. Sawynok. 1999. Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur. J. Pharmacol. 384: 123-138 https://doi.org/10.1016/S0014-2999(99)00626-3
  17. Schaible, H. G., R. F. Schmidt, and W. D. Willis. 1987. Enhancement of the responses of ascending tract cells in the cat spinal cord by acute inflammation of the knee joint. Exp. Brain Res. 66: 489-499 https://doi.org/10.1007/BF00270681
  18. Schott, E., O. G. Berge, K. Angeby-Moller, G. Hammarstorm, C. J. Dalsgaard, and E. Brodin. 1994. Weight bearing as an objective measure of arthritic pain in the rat. J. Pharmacol. Toxicol. Methods 31: 79-83 https://doi.org/10.1016/1056-8719(94)90046-9
  19. Sedgwick, A. D., A. R. Moore, A. Y. Al-Duaij, J. C. Edwards, and D. A. Willoughby. 1985. Studies into the influence of carrageenan-induced inflammation on articular cartilage degradation using implantation into air pouches. Br. J. Exp. Pathol. 66: 445-453
  20. Silvan, A. M., M. J. Abad, P. Bermejo, A. M. Villar, and J. P. Lopez-Bote. 1996. Aggravation of adjuvant arthritis by carrageenan. Gen. Pharmacol. 27: 639-642 https://doi.org/10.1016/0306-3623(95)02091-8
  21. Stochla, K. and S. Maslinski. 1982. Carrageenan-induced oedema in the rat paw-histamine participation. Agents Actions 12: 201-202 https://doi.org/10.1007/BF01965145
  22. Sweitzer, S. M., R. W. Colburn, M. Rutkowski, and J. A. DeLeo. 1999. Acute peripheral inflammation induces moderate glial activation and spinal IL-1beta expression that correlates with pain behavior in the rat. Brain Res. 829: 209-221 https://doi.org/10.1016/S0006-8993(99)01326-8
  23. Urban, M. O. and G. F. Gebhart. 1999. Supraspinal contributions to hyperalgesia. Proc. Natl. Acad. Sci. USA 96: 7687-7692
  24. Vinegar, R., J. F. Truax, J. L. Selph, P. R. Johnston, A. L. Venable, and K. K. McKenzie. 1987. Pathway to carrageenaninduced inflammation in the hind limb of the rat. Fed. Proc. 46: 118-126
  25. Watkins, L. R., S. F. Maier, and L. E. Goehler. 1995. Immune activation: The role of pro-inflammatory cytokines in inflammation, illness responses and pathological pain states. Pain 63: 289-302 https://doi.org/10.1016/0304-3959(95)00186-7
  26. Wirth, K. J., H. G. Alpermann, R. Satoh, and M. Inazu. 1992. The bradykinin antagonist Hoe 140 inhibits carrageenan- and thermically induced paw oedema in rats. Agents Actions Suppl. 38: 428-431
  27. Zhang, Y., A. Shaffer, J. Portanova, K. Seibert, and P. C. Isakson. 1997. Inhibition of cyclooxygenase-2 rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. J. Pharmacol. Exp. Ther. 283: 1069-1075